Worksheet on Factoring Simple Quadratics | Factoring Quadratic Equations Worksheet with Answers


Worksheet on Factoring Simple Quadratics is for those who are seriously searching to learn factorization problems. We have given different problems along with solutions on our Factorization Worksheets. Therefore, anyone who wants to start their practice immediately to learn factorization problems can utilize our Factoring Quadratic Equations Worksheet With Answers and get good marks. Concentrate on the areas you are lagging and improve your performance in the exams. Practice with Factoring Simple Quadratics Worksheet those have equations like x^2 + ax + b.
1. Factorize the following expression:
(i) a2 + 9a + 20
(ii) m2 + 15m + 54
(iii) y2 + 3y – 4
(iv) n2 + 2n – 24
(v) x2
5x + 4
(vi) a2 – 15a + 14

Solution:

(i) The Given expression is a2 + 9a + 20.
By comparing the given expression a2 + 9a + 20 with the basic expression x^2 + ax + b.
Here, a = 1, b = 9, and c = 20.
The sum of two numbers is m + n = b = 9 = 5 + 4.
The product of two number is m * n = a * c = 1 * (20) = 20 = 5 * 4
From the above two instructions, we can write the values of two numbers m and n as 5 and 4.
Then, a2 + 9a + 20 = a2 +5a + 4a + 20.
= a (a+ 5) + 4(a + 5).
Factor out the common terms.
(a + 5) (a + 4)
Then, a2 + 9a + 20 = (a + 5) (a + 4).
(ii) The Given expression is m2 + 15m + 54.
By comparing the given expression m2 + 15m + 54 with the basic expression x^2 + ax + b.
Here, a = 1, b = 15, and c = 54.
The sum of two numbers is m + n = b = 15 = 6 + 9.
The product of two number is m * n = a * c = 1 * (54) = 54 = 6 * 9
From the above two instructions, we can write the values of two numbers m and n as 6 and 9.
Then, m2 + 15m + 54 = m2 + 6m + 9m + 54.
= m (m + 6) + 9(m + 6).
Factor out the common terms.
(m + 6) (m + 9)
Then, m2 + 15m + 54 = (m + 6) (m + 9).
(iii) The Given expression is y2 + 3y – 4.
By comparing the given expression y2 + 3y – 4 with the basic expression x^2 + ax + b.
Here, a = 1, b = 3, and c = -4.
The sum of two numbers is m + n = b = 3 = 4 – 1.
The product of two number is m * n = a * c = 1 * (-4) = -4 = 1 * -4
From the above two instructions, we can write the values of two numbers m and n as 1 and -4.
Then, y2 + 3y – 4 = y2 + 4y -y – 4.
= y (y + 4) – 1(y + 4).
Factor out the common terms.
(y + 4) (y – 1)
Then, y2 + 3y – 4 = (y + 4) (y – 1).
(iv) The Given expression is n2 + 2n – 24.
By comparing the given expression n2 + 2n – 24 with the basic expression x^2 + ax + b.
Here, a = 1, b = 2, and c = -24.
The sum of two numbers is m + n = b = 2 = 6 – 4.
The product of two number is m * n = a * c = 1 * (-24) = -24 = 6 * -4
From the above two instructions, we can write the values of two numbers m and n as 6 and -4.
Then, n2 + 2n – 24 = n2 + 6n – 4n – 24.
= n (n + 6) – 4(n + 6).
Factor out the common terms.
(n + 6) (n – 4)
Then, n2 + 2n – 24 = (n + 6) (n – 4).
(v) The Given expression is x2
5x + 4.
By comparing the given expression x2
5x + 4 with the basic expression x^2 + ax + b.
Here, a = 1, b = -5, and c = 4.
The sum of two numbers is m + n = b = -5 = -1 – 4.
The product of two number is m * n = a * c = 1 * (4) = 4 = -1 * -4
From the above two instructions, we can write the values of two numbers m and n as -1 and -4.
Then, x2
5x + 4 = x2
x – 4x + 4.
= x (x – 1) – 4(x – 1).
Factor out the common terms.
(x – 1) (x – 4)
Then, x2
5x + 4 = (x – 1) (x – 4).
(vi) The Given expression is a2 – 15a + 14.
By comparing the given expression a2 – 15a + 14 with the basic expression x^2 + ax + b.
Here, a = 1, b = -15, and c = 14.
The sum of two numbers is m + n = b = -15 = -1 – 14.
The product of two number is m * n = a * c = 1 * (14) = 14 = -1 * -14
From the above two instructions, we can write the values of two numbers m and n as -1 and -14.
Then, a2 – 15a + 14 = a2 – a – 14a + 14.
= a (a – 1) – 14(a – 1).
Factor out the common terms.
(a – 1) (a – 14)
Then, a2 – 15a + 14 = (a – 1) (a – 14).


2. Resolve into factors
(i) a2 + 3a – 10
(ii) m2
18m – 63
(iii) a2 + 6a + 8
(iv) a2 + 12a + 32
(v) x2
8x + 15
(vi) m2
12m + 35

Solution:

(i) The Given expression is a2 + 3a – 10.
By comparing the given expression a2 + 3a – 10 with the basic expression x^2 + ax + b.
Here, a = 1, b = 3, and c = -10.
The sum of two numbers is m + n = b = 3 = 5 – 2.
The product of two number is m * n = a * c = 1 * (-10) = -10 = 5 * -2
From the above two instructions, we can write the values of two numbers m and n as 5 and -2.
Then, a2 + 3a – 10 = a2 + 5a – 2a – 10.
= a (a + 5) – 2(a + 5).
Factor out the common terms.
(a + 5) (a – 2)
Then, a2 + 3a – 10 = (a + 5) (a – 2).
(ii) The Given expression is m2
18m – 63.
By comparing the given expression m2
18m – 63 with the basic expression x^2 + ax + b.
Here, a = 1, b = -18, and c = -63.
The sum of two numbers is m + n = b = -18 = 3 – 21.
The product of two number is m * n = a * c = 1 * (-63) = -63 = 3 * -21
From the above two instructions, we can write the values of two numbers m and n as 3 and -21.
Then, m2
18m – 63 = m2 + 3m – 21m – 63.
= m (m + 3) – 21(m + 3).
Factor out the common terms.
(m + 3) (m – 21)
Then, m2
18m – 63 = (m + 3) (m – 21).
(iii) The Given expression is a2 + 6a + 8.
By comparing the given expression a2 + 6a + 8 with the basic expression x^2 + ax + b.
Here, a = 1, b = 6, and c = 8.
The sum of two numbers is m + n = b = 6 = 2 + 4.
The product of two number is m * n = a * c = 1 * (8) = 8 = 2 * 4
From the above two instructions, we can write the values of two numbers m and n as 2 and 4.
Then, a2 + 6a + 8 = a2 + 2a + 4a + 8.
= a (a + 2) + 4(a + 2).
Factor out the common terms.
(a + 2) (a + 4)
Then, a2 + 6a + 8 = (a + 2) (a + 4).
(iv) The Given expression is a2 + 12a + 32.
By comparing the given expression a2 + 12a + 32 with the basic expression x^2 + ax + b.
Here, a = 1, b = 12, and c = 32.
The sum of two numbers is m + n = b = 12 = 8 + 4.
The product of two number is m * n = a * c = 1 * (32) = 32 = 8 * 4
From the above two instructions, we can write the values of two numbers m and n as 8 and 4.
Then, a2 + 12a + 32 = a2 + 8a + 4a + 32.
= a (a + 8) + 4(a + 8).
Factor out the common terms.
(a + 8) (a + 4)
Then, a2 + 12a + 32 = (a + 8) (a + 4).
(v) The Given expression is x2
8x + 15.
By comparing the given expression x2
8x + 15 with the basic expression x^2 + ax + b.
Here, a = 1, b = -8, and c = 15.
The sum of two numbers is m + n = b = -8 = – 3 – 5.
The product of two number is m * n = a * c = 1 * (15) = 15 = -3 * -5
From the above two instructions, we can write the values of two numbers m and n as -3 and -5.
Then, x2
8x + 15 = x2
3x – 5x + 15.
= x (x – 3) – 5(x – 3).
Factor out the common terms.
(x – 3) (x – 5)
Then, x2
8x + 15 = (x – 3) (x – 5).
(vi) The Given expression is m2
12m + 35.
By comparing the given expression m2
12m + 35 with the basic expression x^2 + ax + b.
Here, a = 1, b = -12, and c = 35.
The sum of two numbers is m + n = b = -12 = – 5 – 7.
The product of two number is m * n = a * c = 1 * (35) = 35 = -5 * -7
From the above two instructions, we can write the values of two numbers m and n as -5 and -7.
Then, m2
12m + 35 = m2
5m – 7m + 35.
= m (m – 5) – 7(m – 5).
Factor out the common terms.
(m – 7) (m – 5)
Then, m2
12m + 35 = (m – 7) (m – 5).


3. Factor the middle term
(i) m2
4m
12
(ii) a2 – 4a – 45
(iii) x2 + 15x + 56
(iv) p2
13p + 36
(v) q2 + 5q – 24
(vi) r2 + 17r – 84
(vii) a2 – 15a + 44
(viii) m2 – 5m – 24
(ix) x2 – 4x
77
(x) a2
12a + 20

Solution:

(i) The Given expression is m2
4m
12.
By comparing the given expression m2
4m
12 with the basic expression x^2 + ax + b.
Here, a = 1, b = -4, and c = -12.
The sum of two numbers is m + n = b = -4 = 2 – 6.
The product of two number is m * n = a * c = 1 * (-12) = -12 = 2 * -6
From the above two instructions, we can write the values of two numbers m and n as 2 and -6.
Then, m2
4m
12 = m2
2m + 6m
12.
= m (m – 2) + 6(m – 2).
Factor out the common terms.
(m – 2) (m + 6)
Then, m2
4m
12 = (m – 2) (m + 6).
(ii) The Given expression is a2 – 4a – 45.
By comparing the given expression a2 – 4a – 45 with the basic expression x^2 + ax + b.
Here, a = 1, b = -4, and c = -45.
The sum of two numbers is m + n = b = -4 = 5 – 9.
The product of two number is m * n = a * c = 1 * (-45) = -45 = 5 * -9
From the above two instructions, we can write the values of two numbers m and n as 5 and -9.
Then, a2 – 4a – 45 = a2 + 5a – 9a – 45.
= a (a + 5) – 9(a + 5).
Factor out the common terms.
(a + 5) (a – 9)
Then, a2 – 4a – 45 = (a + 5) (a – 9).
(iii) The Given expression is x2 + 15x + 56.
By comparing the given expression x2 + 15x + 56 with the basic expression x^2 + ax + b.
Here, a = 1, b = 15, and c = 56.
The sum of two numbers is m + n = b = 15 = 8 + 7.
The product of two number is m * n = a * c = 1 * (56) = 56 = 8 * 7
From the above two instructions, we can write the values of two numbers m and n as 8 and 7.
Then, x2 + 15x + 56 = x2 + 8x + 7x + 56.
= x (x + 8) + 7(x + 8).
Factor out the common terms.
(x + 8) (x + 7)
Then, x2 + 15x + 56 = (x + 8) (x + 7).
(iv) The Given expression is p2
13p + 36.
By comparing the given expression p2
13p + 36 with the basic expression x^2 + ax + b.
Here, a = 1, b = -13, and c = 36.
The sum of two numbers is m + n = b = -13 = -9 – 4.
The product of two number is m * n = a * c = 1 * (36) = 36 = -9 * -4
From the above two instructions, we can write the values of two numbers m and n as -9 and -4.
Then, p2
13p + 36 = p2
9p – 4p + 36.
= p (p – 9) – 4(p – 9).
Factor out the common terms.
(p – 9) (p – 4)
Then, p2
13p + 36 = (p – 9) (p – 4).
(v) The Given expression is q2 + 5q – 24.
By comparing the given expression q2 + 5q – 24 with the basic expression x^2 + ax + b.
Here, a = 1, b = 5, and c = -24.
The sum of two numbers is m + n = b = 5 = -3 + 8.
The product of two number is m * n = a * c = 1 * (-24) = -24 = -3 * 8
From the above two instructions, we can write the values of two numbers m and n as -3 and 8.
Then, q2 + 5q – 24 = q2 – 3q + 8q – 24.
= q (q – 3) + 8(q – 3).
Factor out the common terms.
(q – 3) (q + 8)
Then, q2 + 5q – 24 = (q – 3) (q + 8).
(vi) The Given expression is r2 + 17r – 84.
By comparing the given expression r2 + 17r – 84 with the basic expression x^2 + ax + b.
Here, a = 1, b = 17, and c = -84.
The sum of two numbers is m + n = b = 17 = 21 – 4.
The product of two number is m * n = a * c = 1 * (-84) = -84 = 21 * -4
From the above two instructions, we can write the values of two numbers m and n as 21 and -4.
Then, r2 + 17r – 84 = r2 + 21r -4r – 84.
= r (r + 21) – 4(r + 21).
Factor out the common terms.
(r + 21) (r – 4)
Then, r2 + 17r – 84 = (r + 21) (r – 4).
(vii) The Given expression is a2 – 15a + 44.
By comparing the given expression a2 – 15a + 44 with the basic expression x^2 + ax + b.
Here, a = 1, b = -15, and c = 44.
The sum of two numbers is m + n = b = -15 = -11 – 4.
The product of two number is m * n = a * c = 1 * (44) = 44 = -11 * -4
From the above two instructions, we can write the values of two numbers m and n as -11 and -4.
Then, a2 – 15a + 44 = a2 – 11a – 4a + 44.
= a (a – 11) – 4(a – 11).
Factor out the common terms.
(a – 11) (a – 4)
Then, a2 – 15a + 44 = (a – 11) (a – 4).
(viii) The Given expression is m2 – 5m – 24.
By comparing the given expression m2 – 5m – 24 with the basic expression x^2 + ax + b.
Here, a = 1, b = -5, and c = -24.
The sum of two numbers is m + n = b = -5 = 3 – 8.
The product of two number is m * n = a * c = 1 * (-24) = -24 = 3 * -8
From the above two instructions, we can write the values of two numbers m and n as 3 and -8.
Then, m2 – 5m – 24 = m2 + 3m – 8m – 24.
= m (m + 3) – 8(m – 3).
Factor out the common terms.
(m – 3) (m – 8)
Then, m2 – 5m – 24 = (m – 3) (m – 8).
(ix) The Given expression is x2 – 4x
77.
By comparing the given expression x2 – 4x
77 with the basic expression x^2 + ax + b.
Here, a = 1, b = -4, and c = -77.
The sum of two numbers is m + n = b = -4 = -11 + 7.
The product of two number is m * n = a * c = 1 * (-77) = -77 = -11 * 7
From the above two instructions, we can write the values of two numbers m and n as -11 and 7.
Then, x2 – 4x
77 = x2 – 11x +7x
77.
= x (x – 11) + 7(x – 11).
Factor out the common terms.
(x – 11) (x + 7)
Then, x2 – 4x
77 = (x – 11) (x + 7).
(x) The Given expression is a2
12a + 20.
By comparing the given expression a2
12a + 20 with the basic expression x^2 + ax + b.
Here, a = 1, b = -12, and c = 20.
The sum of two numbers is m + n = b = -12 = -10 – 2.
The product of two number is m * n = a * c = 1 * (20) = 20 = -10 * -2
From the above two instructions, we can write the values of two numbers m and n as -10 and -2.
Then, a2
12a + 20 = a2
10a – 2a + 20.
= a (a – 10) – 2(a – 10).
Factor out the common terms.
(a – 10) (a – 2)
Then, a2
12a + 20 = (a – 10) (a – 2).