NCERT Solutions Class 8 Chapter 9 Algebraic Expressions and Identities have been provided by subject experts at CoolGyan’S. Are you stuck with the Class 8 Maths NCERT textbook question? Need help in preparing for an exam in a particular concept? NCERT Solutions will help you do both and much more. CBSE NCERT Solutions for Class 8 provide detailed solutions of all questions covered in Chapter 9 Algebraic Expressions and Identities. Our experienced academicians provide detailed and step-by-step solutions for all the questions in the subject of Maths from the NCERT textbook. Download the free Class 8 Maths NCERT Solutions and get going with your homework as well as exam preparations.
Download PDF of NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities
Access Answers to NCERT Class 8 Maths Chapter 9 – Algebraic Expressions and Identities
Exercise 9.1 Page No: 140
Q1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz2 – 3zy (ii) 1 + x + x2(iii) 4x2y2 – 4x2y2z2 + z2 (iv) 3 – pq + qr – p (v) (x/2) + (y/2) – xy (vi) 0.3a – 0.6ab + 0.5b
Solution :
Sl. No. | Expression | Term | Coefficient |
i) | 5xyz2 – 3zy | Term: 5xyz2 Term: -3zy | 5 -3 |
ii) | 1 + x + x2 | Term: 1 Term: x Term: x2 | 1 1 1 |
iii) | 4x2y2 – 4x2y2z2 + z2 | Term: 4x2y2 Term: -4 x2y2z2 Term : z2 | 4 -4 1 |
iv) | 3 – pq + qr – p | Term : 3 -pq qr -p | 3 -1 1 -1 |
v) | (x/2) + (y/2) – xy | Term : x/2 Y/2 -xy | ½ 1/2 -1 |
vi) | 0.3a – 0.6ab + 0.5b | Term : 0.3a -0.6ab 0.5b | 0.3 -0.6 0.5 |
2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y – 3y2 , 2y – 3y2 + 4y3 , 5x – 4y + 3xy, 4z – 15z2 , ab + bc + cd + da, pqr, p2q + pq2 , 2p + 2q
Solution:
Let us first define the classifications of these 3 polynomials:
Monomials, Contain only one term.
Binomials, Contain only two terms.
Trinomials, Contain only three terms.
x + y | two terms | Binomial |
1000 | one term | Monomial |
x + x2 + x3 + x4 | four terms | Polynomial, and it does not fit in listed three categories |
2y – 3y2 | two terms | Binomial |
2y – 3y2 + 4y3 | three terms | Trinomial |
5x – 4y + 3xy | three terms | Trinomial |
4z – 15z2 | two terms | Binomial |
ab + bc + cd + da | four terms | Polynomial, and it does not fit in listed three categories |
pqr | one term | Monomial |
p2q + pq2 | two terms | Binomial |
2p + 2q | two terms | Binomial |
7 + y + 5x | three terms | Trinomial |
3. Add the following.
(i) ab – bc, bc – ca, ca – ab
(ii) a – b + ab, b – c + bc, c – a + ac
(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Solution:
i) (ab – bc) + (bc – ca) + (ca-ab)
= ab – bc + bc – ca + ca – ab
= ab – ab – bc + bc – ca + ca
= 0
ii) (a – b + ab) + (b – c + bc) + (c – a + ac)
= a – b + ab + b – c + bc + c – a + ac
= a – a +b – b +c – c + ab + bc + ca
= 0 + 0 + 0 + ab + bc + ca
= ab + bc + ca
iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
= (2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)
= 2p2q2 – 3p2q2 – 3pq + 7pq + 4 + 5
= – p2q2 + 4pq + 9
iv)(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)
= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl
= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl
4. (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
(c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q
Solution:
(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)
= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12
= 12a – 4a -9ab + 7ab +5b – 3b -3 -12
= 8a – 2ab + 2b – 15
b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)
= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx
=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz
= 2xy – 7yz + 5zx + 10xyz
c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)
= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10
=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q
= 28 + 5p – 18q + 8pq – 7pq2 + p2q
Exercise 9.2 Page No: 143
1. Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) – 4p, 7p
(iii) – 4p, 7pq
(iv) 4p3, – 3p
(v) 4p, 0
Solution:
(i) 4 , 7 p = 4 7 × p = 28p
(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2
(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) = -28p2q
(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) = -12p4
(v) 4p × 0 = 0
2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)
Solution:
Area of rectangle = Length x breadth. So, it is multiplication of two monomials.
The results can be written in square units.
(i) p × q = pq
(ii)10m × 5n = 50mn
(iii) 20x2 × 5y2 = 100x2y2
(iv) 4x × 3x2 = 12x3
(v) 3mn × 4np = 12mn2p
3. Complete the following table of products:
Solution:
4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Solution:
Volume of rectangle = length x breadth x height. To evaluate volume of rectangular boxes, multiply all the monomials.
(i) 5a x 3a2 x 7a4 = (5 × 3 × 7) (a × a2 × a4 ) = 105a7
(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr
(iii) y × 2x2y × 2xy2 =(1 × 2 × 2 )( x × x2 × x × y × y × y2 ) = 4x4y4
(iv) a x 2b x 3c = (1 × 2 × 3 ) (a × b × c) = 6abc
5. Obtain the product of
(i) xy, yz, zx
(ii) a, – a2 , a3
(iii) 2, 4y, 8y2 , 16y3
(iv) a, 2b, 3c, 6abc
(v) m, – mn, mnp
Solution:
(i) xy × yz × zx = x2 y2 z2
(ii) a × – a2 × a3 = – a6
(iii) 2 × 4y × 8y2 × 16y3 = 1024 y6
(iv) a × 2b × 3c × 6abc = 36a2 b2 c2
(v) m × – mn × mnp = –m3 n2 p
Exercise 9.3 Page No: 146
1. Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
(ii) ab, a – b
(iii) a + b, 7a²b²
(iv) a2 – 9, 4a
(v) pq + qr + rp, 0
Solution:
(i)4p(q + r) = 4pq + 4pr
(ii)ab(a – b) = a2 b – a b2
(iii)(a + b) (7a2b2) = 7a3b2 + 7a2b3
(iv) (a2 – 9)(4a) = 4a3 – 36a
(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )
2. Complete the table.
Solution:
First expression | Second expression | Product | |
(i) | a | b + c + d | a(b+c+d) = a×b + a×c + a×d = ab + ac + ad |
(ii) | x + y – 5 | 5xy | 5 xy (x + y – 5) = 5 xy x x + 5 xy x y – 5 xy x 5 = 5 x2y + 5 xy2 – 25xy |
(iii) | p | 6p2 – 7p + 5 | p (6 p 2-7 p +5) = p× 6 p2 – p× 7 p + p×5 = 6 p3 – 7 p2 + 5 p |
(iv) | 4 p2 q2 | P2 – q2 | 4p2 q2 * (p2 – q2 ) =4 p4 q2– 4p2 q4 |
(v) | a + b + c | abc | abc(a + b + c) = abc × a + abc × b + abc × c = a2bc + ab2c + abc2 |
3. Find the product.
i) a2 x (2a22) x (4a26)
ii) (2/3 xy) ×(-9/10 x2y2)
(iii) (-10/3 pq3/) × (6/5 p3q)
(iv) (x) × (x2) × (x3) × (x4)
Solution:
i) a2 x (2a22) x (4a26)
= (2 × 4) ( a2 × a22 × a26 )
= 8 × a2 + 22 + 26
= 8a50
ii) (2xy/3) ×(-9x2y2/10)
=(2/3 × -9/10 ) ( x × x2 × y × y2 )
= (-3/5 x3y3)
iii) (-10pq3/3) ×(6p3q/5)
= ( -10/3 × 6/5 ) (p × p3× q3 × q)
= (-4p4q4)
iv) ( x) x (x2) x (x3) x (x4)
= x 1 + 2 + 3 + 4
= x10
4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2
(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.
Solution:
a) 3x (4x – 5) + 3
=3x ( 4x) – 3x( 5) +3
=12x2 – 15x + 3
(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32) – 15 (3) +3
= 108 – 45 + 3
= 66
(ii) Putting x=1/2 in the equation we get
12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3
= 12 (1/4) – 15/2 +3
= 3 – 15/2 + 3
= 6- 15/2
= (12- 15 ) /2
= -3/2
b) a(a2 +a +1)+5
= a x a2 + a x a + a x 1 + 5 =a3+a2+a+ 5
(i) putting a=0 in the equation we get 03+02+0+5=5
(ii) putting a=1 in the equation we get 13 + 12 + 1+5 = 1 + 1 + 1+5 = 8
(iii) Putting a = -1 in the equation we get (-1)3+(-1)2 + (-1)+5 = -1 + 1 – 1+5 = 4
5. (a) Add: p ( p – q), q ( q – r) and r ( r – p)
(b) Add: 2x (z – x – y) and 2y (z – y – x)
(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l )
(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c) from 4c ( – a + b + c )
Solution:
a) p ( p – q) + q ( q – r) + r ( r – p)
= (p2 – pq) + (q2 – qr) + (r2 – pr)
= p2 + q2 + r2 – pq – qr – pr
b) 2x (z – x – y) + 2y (z – y – x)
= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)
= 2xz – 4xy + 2yz – 2x2 – 2y2
c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)
= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)
= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln
= 25 ln + 5l2
d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))
= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))
=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)
= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc
= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2
Exercise 9.4 Page No: 148
1. Multiply the binomials.
(i) (2x + 5) and (4x – 3)
(ii) (y – 8) and (3y – 4)
(iii) (2.5l – 0.5m) and (2.5l + 0.5m)
(iv) (a + 3b) and (x + 5)
(v) (2pq + 3q2) and (3pq – 2q2)
(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)
Solution :
(i) (2x + 5)(4x – 3)
= 2x x 4x – 2x x 3 + 5 x 4x – 5 x 3
= 8x² – 6x + 20x -15
= 8x² + 14x -15
ii) ( y – 8)(3y – 4)
= y x 3y – 4y – 8 x 3y + 32
= 3y2 – 4y – 24y + 32
= 3y2 – 28y + 32
(iii) (2.5l – 0.5m)(2.5l + 0.5m)
= 2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m
= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m2
= 6.25l2– 0.25 m2
iv) (a + 3b) (x + 5)
= ax + 5a + 3bx + 15b
v) (2pq + 3q2) (3pq – 2q2)
= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2
= 6p2q2 – 4pq3 + 9pq3 – 6q4
= 6p2q2 + 5pq3 – 6q4
(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )
=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )
=(3/4 a² + 3b² ) x (4a² – 8/3 b² )
=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )
=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²
=3a4 – 2a² b² + 12 a² b² – 8b4
= 3a4 + 10a² b² – 8b4
2. Find the product.
(i) (5 – 2x) (3 + x)
(ii) (x + 7y) (7x – y)
(iii) (a2+ b) (a + b2)
(iv) (p2 – q2) (2p + q)
Solution:
(i) (5 – 2x) (3 + x)
= 5 (3 + x) – 2x (3 + x)
=15 + 5x – 6x – 2x2
= 15 – x -2 x 2
(ii) (x + 7y) (7x – y)
= x(7x-y) + 7y ( 7x-y)
=7x2 – xy + 49xy – 7y2
= 7x2 – 7y2 + 48xy
iii) (a2+ b) (a + b2)
= a2 (a + b2) + b(a + b2)
= a3 + a2b2 + ab + b3
= a3 + b3 + a2b2 + ab
iv) (p2– q2) (2p + q)
= p2 (2p + q) – q2 (2p + q)
=2p3 + p2q – 2pq2 – q3
= 2p3 – q3 + p2q – 2pq2
3. Simplify.
(i) (x2– 5) (x + 5) + 25
(ii) (a2+ 5) (b3+ 3) + 5
(iii)(t + s2)(t2 – s)
(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
(v) (x + y)(2x + y) + (x + 2y)(x – y)
(vi) (x + y)(x2– xy + y2)
(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
(viii) (a + b + c)(a + b – c)
Solution :
i) (x2– 5) (x + 5) + 25
= x3 + 5x2 – 5x – 25 + 25
= x3 + 5x2 – 5x
ii) (a2+ 5) (b3+ 3) + 5
= a2b3 + 3a2 + 5b3 + 15 + 5
= a2b3 + 5b3 + 3a2 + 20
iii) (t + s2)(t2 – s)
= t (t2 – s) + s2(t2 – s)
= t3 – st + s2t2 – s3
= t3 – s3 – st + s2t2
iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)
= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd
= 4ac
v) (x + y)(2x + y) + (x + 2y)(x – y)
= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2
= 3x2 + 4xy – y2
vi) (x + y)(x2– xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3
vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2
viii) (a + b + c)(a + b – c)
= a2 + ab – ac + ab + b2 – bc + ac + bc – c2
= a2 + b2 – c2 + 2ab
Exercise 9.5 Page No: 151
1. Use a suitable identity to get each of the following products.
(i) (x + 3) (x + 3)
(ii) (2y + 5) (2y + 5)
(iii) (2a – 7) (2a – 7)
(iv) (3a – 1/2)(3a – 1/2)
(v) (1.1m – 0.4) (1.1m + 0.4)
(vi) (a2+ b2) (- a2+ b2)
(vii) (6x – 7) (6x + 7)
(viii) (- a + c) (- a + c)
(ix) (1/2x + 3/4y) (1/2x + 3/4y)
(x) (7a – 9b) (7a – 9b)
Solution:
(i) (x + 3) (x + 3) = (x + 3)2
= x2 + 6x + 9 Using (a+b) 2 = a2 + b2 + 2ab
ii) (2y + 5) (2y + 5) = (2y + 5)2
= 4y2 + 20y + 25 Using (a+b) 2 = a2 + b2 + 2ab
iii) (2a – 7) (2a – 7) = (2a – 7)2
= 4a2 – 28a + 49
Using (a-b) 2
= a2 + b2 – 2ab
iv) (3a – 1/2)(3a – 1/2) = (3a – 1/2)2
= 9a2 -3a+(1/4)
Using (a-b) 2
= a2 + b2 – 2ab
v) (1.1m – 0.4) (1.1m + 0.4)
= 1.21m2 – 0.16
Using (a – b)(a + b)
= a2 – b2
vi) (a2+ b2) (– a2+ b2)
= (b2 + a2 ) (b2 – a2)
= -a4 + b4
Using (a – b)(a + b) = a2 – b2
vii) (6x – 7) (6x + 7)
=36x2 – 49 Using (a – b)(a + b)
= a2 – b2
viii) (– a + c) (– a + c) = (– a + c)2
= c2 + a2 – 2ac Using (a-b) 2
= a2 + b2 – 2ab
= (x2/4) + (9y2/16) + (3xy/4)
Using (a+b) 2
= a2 + b2 + 2ab
x) (7a – 9b) (7a – 9b) = (7a – 9b)2
= 49a2 – 126ab + 81b2
Using (a-b) 2 = a2 + b2 – 2ab
2. Use the identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following products.
(i) (x + 3) (x + 7)
(ii) (4x + 5) (4x + 1)
(iii) (4x – 5) (4x – 1)
(iv) (4x + 5) (4x – 1)
(v) (2x + 5y) (2x + 3y)
(vi) (2a2 + 9) (2a2 + 5)
(vii) (xyz – 4) (xyz – 2)
Solution:
(i)(x + 3) (x + 7)
= x2 + (3+7)x + 21
= x2 + 10x + 21
ii) (4x + 5) (4x + 1)
= 16x2 + 4x + 20x + 5
= 16x2 + 24x + 5
iii) (4x – 5) (4x – 1)
= 16x2 – 4x – 20x + 5
= 16x2 – 24x + 5
iv) (4x + 5) (4x – 1)
= 16x2 + (5-1)4x – 5
= 16x2 +16x – 5
v) (2x + 5y) (2x + 3y)
= 4x2 + (5y + 3y)2x + 15y2
= 4x2 + 16xy + 15y2
vi) (2a2+ 9) (2a2+ 5)
= 4a4 + (9+5)2a2 + 45
= 4a4 + 28a2 + 45
vii) (xyz – 4) (xyz – 2)
= x2y2z2 + (-4 -2)xyz + 8
= x2y2z2 – 6xyz + 8
3. Find the following squares by using the identities.
(i) (b – 7)2
(ii) (xy + 3z)2
(iii) (6x2 – 5y)2
(iv) [(2m/3) + (3n/2)]2
(v) (0.4p – 0.5q)2
(vi) (2xy + 5y)2
Solution:
Using identities:
(a – b) 2 = a2 + b2 – 2ab (a + b) 2 = a2 + b2 + 2ab
(i) (b – 7)2 = b2 – 14b + 49
(ii) (xy + 3z)2 = x2y2 + 6xyz + 9z2
(iii) (6x2 – 5y)2 = 36x4 – 60x2y + 25y2
(iv) [(2m/3}) + (3n/2)]2 = (4m2/9) +(9n2/4) + 2mn
(v) (0.4p – 0.5q)2 = 0.16p2 – 0.4pq + 0.25q2
(vi) (2xy + 5y)2 = 4x2y2 + 20xy2 + 25y2
4. Simplify.
(i) (a2 – b2)2
(ii) (2x + 5)2 – (2x – 5)2
(iii) (7m – 8n)2 + (7m + 8n)2
(iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
(vi) (ab + bc)2– 2ab²c
(vii) (m2 – n2m)2 + 2m3n2
Solution:
i) (a2– b2)2 = a4 + b4 – 2a2b2
ii) (2x + 5)2 – (2x – 5)2
= 4x2 + 20x + 25 – (4x2 – 20x + 25) = 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x
iii) (7m – 8n)2 + (7m + 8n)2
= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 49n2
= 98m2 + 128n2
iv) (4m + 5n)2 + (5m + 4n)2
= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2
= 41m2 + 80mn + 41n2
v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2
= 4p2 – 4q2
vi) (ab + bc)2– 2ab²c = a2b2 + 2ab2c + b2c2 – 2ab2c = a2b2 + b2c2
vii) (m2 – n2m)2 + 2m3n2
= m4 – 2m3n2 + m2n4 + 2m3n2
= m4 + m2n4
5. Show that.
(i) (3x + 7)2 – 84x = (3x – 7)2
(ii) (9p – 5q)2+ 180pq = (9p + 5q)2
(iii) (4/3m – 3/4n)2 – (4pq – 3q)2 = 48pq2
(iv) (4pq + 3q)2– (4pq – 3q)2 = 48pq2
(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Solution:
i) LHS = (3x + 7)2 – 84x
= 9x2 + 42x + 49 – 84x
= 9x2 – 42x + 49
= RHS
LHS = RHS
ii) LHS = (9p – 5q)2+ 180pq
= 81p2 – 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
RHS = (9p + 5q)2
= 81p2 + 90pq + 25q2
LHS = RHS
LHS = RHS
iv) LHS = (4pq + 3q)2– (4pq – 3q)2
= 16p2q2 + 24pq2 + 9q2 – 16p2q2 + 24pq2 – 9q2
= 48pq2
= RHS
LHS = RHS
v) LHS = (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)
= a2 – b2 + b2 – c2 + c2 – a2
= 0
= RHS
6. Using identities, evaluate.
(i) 71²
(ii) 99²
(iii) 1022
(iv) 998²
(v) 5.2²
(vi) 297 x 303
(vii) 78 x 82
(viii) 8.92
(ix) 10.5 x 9.5
Solution:
i) 712
= (70+1)2
= 702 + 140 + 12
= 4900 + 140 +1
= 5041
ii) 99²
= (100 -1)2
= 1002 – 200 + 12
= 10000 – 200 + 1
= 9801
iii) 1022
= (100 + 2)2
= 1002 + 400 + 22
= 10000 + 400 + 4 = 10404
iv) 9982
= (1000 – 2)2
= 10002 – 4000 + 22
= 1000000 – 4000 + 4
= 996004
v) 5.22
= (5 + 0.2)2
= 52 + 2 + 0.22
= 25 + 2 + 0.4 = 27.4
vi) 297 x 303
= (300 – 3 )(300 + 3)
= 3002 – 32
= 90000 – 9
= 89991
vii) 78 x 82
= (80 – 2)(80 + 2)
= 802 – 22
= 6400 – 4
= 6396
viii) 8.92
= (9 – 0.1)2
= 92 – 1.8 + 0.12
= 81 – 1.8 + 0.01
= 79.21
ix) 10.5 x 9.5
= (10 + 0.5)(10 – 0.5)
= 102 – 0.52
= 100 – 0.25
= 99.75
7. Using a2 – b2 = (a + b) (a – b), find
(i) 512– 492
(ii) (1.02)2– (0.98)2
(iii) 1532– 1472
(iv) 12.12– 7.92
Solution:
i) 512– 492
= (51 + 49)(51 – 49) = 100 x 2 = 200
ii) (1.02)2– (0.98)2
= (1.02 + 0.98)(1.02 – 0.98) = 2 x 0.04 = 0.08
iii) 1532 – 1472
= (153 + 147)(153 – 147) = 300 x 6 = 1800
iv) 12.12 – 7.92
= (12.1 + 7.9)(12.1 – 7.9) = 20 x 4.2= 84
8. Using (x + a) (x + b) = x2 + (a + b) x + ab, find
(i) 103 x 104
(ii) 5.1 x 5.2
(iii) 103 x 98
(iv) 9.7 x 9.8
Solution:
i) 103 x 104
= (100 + 3)(100 + 4)
= 1002 + (3 + 4)100 + 12
= 10000 + 700 + 12
= 10712
ii) 5.1 x 5.2
= (5 + 0.1)(5 + 0.2)
= 52 + (0.1 + 0.2)5 + 0.1 x 0.2
= 25 + 1.5 + 0.02
= 26.52
iii) 103 x 98
= (100 + 3)(100 – 2)
= 1002 + (3-2)100 – 6
= 10000 + 100 – 6
= 10094
iv) 9.7 x 9.8
= (9 + 0.7 )(9 + 0.8)
= 92 + (0.7 + 0.8)9 + 0.56
= 81 + 13.5 + 0.56
= 95.06
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities
NCERT Solutions for Class 8 CBSE Maths Chapter 9, explains basic concepts like terms, factors, coefficients, like and unlike terms, addition and subtraction of algebraic expressions, and multiplication of two or more polynomials. Students will also learn about various algebraic expression identities and solve problems applying these identities. NCERT Class 8 , Chapter 9- Algebraic Expressions and Identities carries a total weightage of 8 to 10 marks in the final examination. NCERT Solutions For Class 8 Maths Chapter 9 Exercises: Get detailed solution for all the questions listed under below exercises:
Exercise 9.1 Solutions : 4 Questions (Short answers)
Exercise 9.2 Solutions : 5 Questions (Short answers)
Exercise 9.3 Solutions : 5 Questions (Short answers)
Exercise 9.4 Solutions : 3 Questions (Short answers)
Exercise 9.5 Solutions : 8 Questions (Short answers)
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities
NCERT Solutions for Class 8 Maths Chapter 9 is mainly about the study of solving polynomial related problems. The chapter builds a strong foundation for the students to deal with higher grade Maths problems.
The main topics covered in this chapter include:
Exercise | Topic |
9.1 | What are Expressions? |
9.2 | Terms, Factors and Coefficients |
9.3 | Monomials, Binomials and Polynomials |
9.4 | Like and Unlike Terms |
9.5 | Addition and Subtraction of Algebraic Expressions |
9.6 | Multiplication of Algebraic Expressions: Introduction |
9.7 | Multiplying a Monomial by a Monomial |
9.8 | Multiplying a Monomial by a Polynomial |
9.9 | Multiplying a Polynomial by a Polynomial |
9.10 | What is an Identity? |
9.11 | Standard Identities |
9.12 | Applying Identities |
Key Features of NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities
- NCERT Solutions provides fully resolved step by step solutions to all textbook questions.
- Set of solutions contain a list of all important formulas on algebraic identities.
- These solutions are designed based on the latest syllabus.
- Solutions are prepared by subject experts.
- NCERT Solutions are helpful for the preparation of competitive exams.