NCERT Solutions class 12 Maths Exercise Miscellaneous 7 (Ex Misc. 7) Chapter 7 Integrals Part 2


NCERT Solutions for Class 12 Maths Exercise Miscellaneous hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises Miscellaneous are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex Misc) Exercise Miscellaneous



Evaluate the integrals in Exercises 23 and 24.

23. 

Ans. Let I =  ……….(i)

Putting 

 

 

And 

 = 

 I = 

[Applying Product Rule]


24.  

Ans. Let I = 

Putting 

 

 

 

 I = 

 I = 

[Applying Product Rule]

 I = 

 I = 


Evaluate the definite integrals in Exercise 25 to 33.

25. 

Ans. Let I = 

 = 


26. 

Ans. Let I = 

  I = 

[Dividing each term by ]

  I = 

 ……….(i)

Putting 

 

 

Limits of integration  when  and when 

  I = 


27.  

Ans. Let I = 

[Dividing each term by ] ….(i)

Putting 

  

 

Limits of integration  when  and when 

  I = 

 ……….(ii)

 I = 

 I = 

 I = 

 I = 

 I = 


28. 

Ans. Let I = ……….(i)

Putting 

 

Again 

 

 

Limits of integration  when  (say)

where ……….(ii)

when 

  I =  = 

 = [From eq. (ii)


29. 

Ans. Let I = 

 I = 

  I = 

  I = 


30. 

Ans. Let I = 

Putting 

 

Again 

 

 

Limits of integration  when  and

when 

  I = 

  I = 

  I = 


31.  

Ans. Let I = 

Putting 

 

Limits of integration  when  and when 

  I = 

 I = 

[Applying Product Rule]

 I = 

 I = 

 I = 

 =  = 


32.  

Ans. Let I = 

 ……….(i)

 I = 

……….(ii)

Adding eq. (i) and (ii),

2I = 

 = 

  I = 


33.  

Ans. Let I = ……….(i)

If we get 

 

  I = 

  I = 

  I = 

  I = 

  I = 


Prove the following (Exercise 34 to 40).

34. 

Ans. Let I = 

 ……….(i)

Let  ……….(ii)

 

 

 

Comparing coefficients of  A + C + 0 ……….(iii)

Comparing coefficients of  A + B = 0 ……….(iv)

Comparing constants B = 1

On solving eq. (iii), (iv) and (v), we get  A =  B = 1, C = 1

Putting these values of A, B and C in eq. (ii),

  I = 

  I = 

  I = 

 I = 


35. 

Ans. Let I = 

[Applying Product rule]

  I = 

 = 1


36.  

Ans. Let I = 

Here 

 

   is an odd function of 

 I =  = 0


37. 

Ans. Let I = 

  I = 

 I = 


38.  

Ans. Let I = 

  I = 

……….(i)

Let I1 = 

Putting 

 

Limits of integration  when  and when 

  I1 = 

Putting value of I1  in eq. (i),

I = 

 I = 


39. 

Ans. Let I = 

Putting 

 

Limits of integration  when  and when , i.e., 

I = 

[Integrating by parts]

 I = 


40. Evaluate  as a limit of sum.

Ans. Given:  

Comparing  we have, 

 

Putting these values in 

I = 

 I = 

 I = 


41. Choose the correct answer:

 is equal to:

(A) 

(B) 

(C) 

(D) 

Ans. Let I = 

……….(i)

Putting 

 

From eq. (i), I = 

Therefore, option (A) is correct.


42. Choose the correct answer:

 is equal to:

(A) 

(B) 

(C) 

(D)  

Ans. Let I = 

I = 

Therefore, option (B) is correct.


NCERT Solutions class 12 Maths Miscellaneous Part 2

43. Choose the correct answer:

If  then  is equal to:

(A) 

(B) 

(C) 

(D) 

Ans. Given:  ……….(i)

Let I =  ……….(ii)

I = 

 ……….(iii)

Adding eq. (ii) and (iii),

2I = 

I = 

Therefore, option (D) is correct.


NCERT Solutions class 12 Maths Miscellaneous Part 2

44. The value of  is:

(A) 1

(B) 2

(C) 

(D)  

Ans. Let I = 

I =

I = 

I =  = 0

Therefore, option (B) is correct.