NCERT Solutions class 12 Maths Exercise Miscellaneous Ch 4 Determinants


NCERT Solutions for Class 12 Maths Exercise Miscellaneous Chapter 4 Determinants – FREE PDF Download

NCERT Solutions for Class 12 Maths Chapter 4 – Determinants is a sure-shot way of obtaining the complete marks in the particular chapter for Board Exam 2019- 2020. CoolGyan provides you with Free PDF download of the same solved by Expert Teachers as per NCERT (CBSE) Book guidelines. They provide the students with precise and to the point answers which fetch very good marks in Board Exams. Download today the NCERT CBSE Solutions for Class 12 Maths Chapter 4 – Determinants to achieve your goal score. Class 12 Maths Chapter 4 – Determinants solved by Expert Teachers as per NCERT (CBSE) Book guidelines.

NCERT Solutions for Class 12 Maths Chapter 4 – Determinants



1. Prove that the determinant  is independent of 

Ans. Let  

Expanding along first row,

 

 

  =  =  which is independent of 


2. Without expanding the determinants, prove that: 

 

Ans. L.H.S. =  

Multiplying R1 by a, R2 by b and R3 by c.

[Interchanging C1 and C3]

[Interchanging C2 and C3]

=RHS

Proved.


3. Evaluate: 

 

Ans. Let  

Expanding along first row,

=

= 1


4. If  and  are real numbers and  Show that either a+b+c=0 or a=b=c

 

Ans. Given:  

 

 

Here,   Either 

 ……….(i)

Or 

 

  [Expanding along first row]

 

 

 

 

 

 

 

  and  and 

  and  and  ……….(ii)

Therefore, from eq. (i) and (ii),

either  or 


5. Solve the equation: 

 

Ans. Given:  

 

 

Either 

  ……….(i)

Or 

 

 

 

 

But this is contrary as given that .

Therefore, from eq. (i),  is only the solution.


6. Prove that: 

 

Ans. L.H.S. =  

 

 = R.H.S.    Proved.


7. If  and B =  find 

 

Ans. Given:  and B =  

Since,   [Reversal law] ……….(i)

Now 

 = 

Therefore,  exists.

  and  and 

 adj. B =  = 

 

From eq. (i), 

 

=∣∣∣∣921310502∣∣∣∣=|9−35−210102|


8. Let A =  verify that:

 

(i) 

(ii) 

Ans. Given: Matrix A =  

 

  = 

Therefore,  exists.

  and 

and 

 adj. A =  = B (say)

  =            ………(i)

 

 = 

Therefore,  exists.

  and 

and 

 adj. B =  = 

 

 ….(ii)

Now to find  (say), where

C = 

C = 

C =  =  =

Therefore,  exists.

  and 

and 

 adj. A = 

 ……….(iii)

Again 

 = A (given)

(i) 

 = 

[From eq. (ii) and (iii)]

(ii) 

  = 


9. Evaluate: 

 

Ans. Let  


10. Evaluate: 

 

Ans. Let  


Using properties of determinants in Exercises 11 to 15, prove that:

 

11. 

Ans. L.H.S. =  

=

Expanding along third column,

 = R.H.S.


12. 

 

Ans. L.H.S. =  

 (say) ……….(i)

Now 

 From eq. (i), L.H.S. =  ……….(ii)

Now 

Expanding along third column

 From eq. (i), L.H.S.

 = R.H.S.


13. 

 

Ans. L.H.S. =  

(a+b+c)[4bc+2ab+2ac+a2a2+ac+abbc](a+b+c)[4bc+2ab+2ac+a2−a2+ac+ab−bc]

 = R.H.S.


14. 

 

Ans. L.H.S. =  

=> 1 = R.H.S.


15.  = 0

 

Ans. L.H.S. =  

 [ C2 and C3 have become identical]

= 0 = R.H.S.


16. Solve the system of the following equations: (Using matrices):

 

Ans. Putting  and  in the given equations, 

  

 the matrix form of given equations is  [AX= B]

Here,   A =  X =  and B = 

 

  exists and unique solution is  ……….(i)

Now     and 

and 

 adj. A =  = 

And 

 From eq. (i),

 

 

 


Choose the correct answer in Exercise 17 to 19.

 

17. If  are in A.P., then the determinant  is:

(A) 0

(B) 1

(C) 

(D) 

Ans. According to question,  ……….(i) 

Let 

[From eq. (i)] = 0 [ R2 and R3 have become identical]

Therefore, option (A) is correct.


18. If  are non-zero real numbers, then the inverse of matrix A =  is:

 

(A) 

(B) 

(C) 

(D) 

Ans. Given: Matrix A =  

 

 

  exists and unique solution is  ……….(i)

Now     and  and 

 adj. A =  = 

And 

Therefore, option (A) is correct.


19. Let A =  where  Then:

 

(A) Det (A) = 0

(B) Det (A) 

(C) Det (A) 

(D) Det (A) 

Ans. Given: Matrix A =  

 

 

  ……….(i)

Since   

  [  cannot be negative]

 

 

 

Therefore, option (D) is correct.