NCERT Solutions class 12 Maths Exercise 8.2 (Ex 8.2) Chapter 8 Application of Integrals


NCERT Solutions for Class 12 Maths Exercise 8.2 Chapter 8 Application of Integrals – FREE PDF Download

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 8 Exercise 8.2 (Ex 8.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 8 Application of Integrals Exercise 8.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 8 Application of Integrals (Ex 8.2) Exercise 8.2



1. Find the area of the circle  which is interior to the parabola 

Ans. Step I. Equation of the circle is  

   ……….(i)

Here centre is (0, 0) and radius is 

Equation of parabola is  …..(ii)

Step II. To find values of  and 

Putting  in eq. (i), 

 

 

 

 

 

  or 

  or 

Putting  in ,

 

Putting  in ,

 

 x=±2–√x=±2

 Points of intersections of circle (i) and parabola (ii) are A and B

Step III. Area OBM = Area between parabola (ii) and axis

  

  

 = 

  ……….(iii)

Step IV. Now area BDM = Area between circle (i) and axis

   

∣∣∣∣1232(32)2y2−−−−−−−−√dy∣∣∣∣|∫1232(32)2−y2dy|  

 …….(iv)

Step V. Required shaded area = Area AOBDA

= 2 (Area OBD) = 2 (Area OBM + Area MBD)

 = 

 = 

26+94sin1119−−−−−√26+94sin−11−19               [Since,cos1x=sin11x2−−−−−√][Since,cos−1x=sin−11−x2]

26+94sin189−−√26+94sin−189

26+94sin122326+94sin−1223 sq. units


2. Find the area bounded by the curves  and 

 

Ans. Equations of two circles are 

   ……….(i)

And  ……….(ii)

From eq. (i), 

Putting this value in eq. (ii),

 

 

 

Putting  in ,

  

 The two points of intersections of circles (i) and (ii) are  and .

Now, from eq. (i),  in first quadrant and from eq. (ii),  in first quadrant.

 Required area OACBO = 2 x Area OAC = 2 (Area OAD + Area DAC)

 =  sq. units


3. Find the area of the region bounded by the curves  and 

 

Ans. Equation of the given curve is 

   ……….(i)

 

Here Vertex of the parabola is (0, 2).

Equation of the given line is    ….….(ii)

Table of values for the line 

012
012

We know that it is a straight line passing through the origin and having slope 1 i.e., making an angle of  with  axis.

Here also, Limits of integration area given to be  to 

 Area bounded by parabola (i) namely  the axis and the ordinates  to  is the area OACD and 

=   = (9 + 6) – 0 = 15 ……….(iii)

Again Area bounded by parabola (ii) namely  the axis and the ordinates  to  is the area OAB and 

=   =    ……….(iii)

 Required area = Area OBCD = Area OACD – Area OAB

= Area given by eq. (iii) – Area given by eq. (iv)

 sq. units


4. Using integration, find the area of the region bounded by the triangle whose vertices are  (1, 3) and (3, 2).

 

Ans. Here, Vertices of triangle are A B (1, 3) and 

C (3, 2).

 Equation of the line is

 

 Area of  = Area bounded by line AB and axis

  

 = 

 =   ……….(i)

Again equation of line BC is   

 Area of trapezium BLMC = Area bounded by line BC and axis

 = 

 = 

 = 5       ……….(ii)

Again equation of line AC is   

 Area of triangle ACM = Area bounded by line AC and axis

 =  = 

 = 4       ……….(iii)

 Required area = Area of  + Area of Trapezium BLMC – Area of 

= 3 + 5 – 4 = 4 sq. units


5. Using integration, find the area of the triangular region whose sides have the equations  and 

 

Ans. Equations of one side of triangle is 

 ………..(i)

second line of triangle is  ………..(ii)

third line of triangle is   ……….(iii)

Solving eq. (i) and (ii), we get  and 

 Point of intersection of lines (i) and (ii) is A (0, 1)

Putting  in eq. (i), we get 

 Point of intersection of lines (i) and (iii) is B (4, 9)

Putting  in eq. (i), we get 

 Point of intersection of lines (ii) and (iii) is C (4, 13)

 Area between line (ii) i.e., AC and axis

 =  = 

= 24 + 4 = 28 sq. units  ……….(iv)

Again Area between line (i) i.e., AB and axis

 =  = 

= 16 + 4 = 20 sq. units  ……….(v)

Therefore, Required area of 

= Area given by (iv) – Area given by (v)

= 28 – 20 = 8 sq. units


6. Choose the correct answer:

 

Smaller area enclosed by the circle  and the line  is:

(A) 

(B) 

(C) 

(D) 

Ans. Step I. Equation of circle is  …….…(i) 

     ………(ii)

Also, equation of the line is   ……….(iii)

Table of values

02
20

Therefore graph of equation (iii) is the straight line joining the points (0, 2) and (2, 0).

Step II. From the graph of circle (i) and straight line (iii), it is clear that points of intersections of circle (i) and straight line (iii) are A (2, 0) and B (0, 2).

Step III. Area OACB, bounded by circle (i) and coordinate axes in first quadrant =  = 

 sq. units   ……….(iv)

Step IV. Area of triangle OAB, bounded by straight line (iii) and coordinate axes

 = 

 = 2 sq. units  ……….(v)

Step V. Required shaded area = Area OACB given by (iv) – Area of triangle OAB by (v)

 sq. units

Therefore, option (B) is correct.


7. Choose the correct answer:

 

Area lying between the curves  and  is:

(A) 

(B) 

(C) 

(D) 

Ans. Equation of curve (parabola) is  …..(i) 

  =    …..(ii)

Equation of another curve (line) is  …..(iii)

Solving eq. (i) and (iii), we get  or  and  or 

Therefore, Points of intersections of circle (i) and line (ii) are O (0, 0) and A (1, 2).

Now Area OBAM = Area bounded by parabola (i) and axis =  =  = 

  ………(iv)

Also, Area OAM = Area bounded by parabola (iii) and axis

 =  = 

   ………(v)

Now Required shaded area OBA = Area OBAM – Area of OAM

 sq. units

Therefore, option (B) is correct.