NCERT Solutions class 12 Maths Exercise 7.6 (Ex 7.6) Chapter 7 Integrals


NCERT Solutions for Class 12 Maths Exercise 7.6 hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises 7.6 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.6) Exercise 7.6



Integrate the functions in Exercises 1 to 8.

1.  

Ans. 

[Applying product rule]

 Ans.


2. 

Ans. 

[Applying product rule]

x3xcos3x+19sin3x+c−x3xcos3x+19sin3x+c    Ans.


3.  

Ans. 

[Applying product rule]

[Again applying product rule]

  Ans.


4. 

Ans. 

[Applying product rule]

 Ans.


5. 

Ans. 

[Applying product rule]

    Ans.


6.  

Ans. 

[Applying product rule]

  Ans.


7. 

Ans. Let I = 

Putting 

  

  I = 

=12θ.sin2θ dθ=12∫θ.sin2θ dθ

[Integrating by parts]

  Ans.


8.  

Ans. Let I = 

=x22tan1x12x2+11x2+1dx=x22tan−1x−12∫x2+1−1×2+1dx

=x22tan1x12(11x2+1)dx=x22tan−1x−12∫(1−1×2+1)dx

=x22tan1xx2+12tan1x+c Ans.=x22tan−1x−x2+12tan−1x+c Ans.

 


Integrate the functions in Exercises 9 to 15.

9. 

Ans. Let I =  ……….(i)

Putting 

  

 

 

  From eq. (i),

I = 

=12θ.sin2θ dθ=−12∫θ.sin2θ dθ

[Applying product rule]

Putting  and 

 Ans.


10. 

Ans. Putting     

  

[Applying product rule]

[Again applying product rule]

 Ans.


11.  

Ans. Let I =  ……….(i)

Putting 

  

 

 

  From eq. (i),

I = 

=θ.cosθ.sinθsinθdθ=−∫θ.cosθ.sinθsinθdθ

=θ.cosθ dθ=−∫θ.cosθ dθ

[Applying product rule]

 Ans.


12.  

Ans. 

[Applying product rule]

 Ans.


13.  

Ans. Let I = 

=


14.  

Ans. 

=  

 Ans.


15. 

Ans. 

[Applying product rule]

=(x33+x)logx(x23+1)dx=(x33+x)logx−∫(x23+1)dx

 Ans.


Integrate the functions in Exercises 16 to 22.

16. 

Ans. Let I = 

It is in the form of  since here  and 

  I = 


17.  

Ans. Let I = 

I = 

It is in the form of  since here  and 

I = 


18.  

Ans. Let I = 

ex(tanx2+12sec2x2)dx∫ex(tanx2+12sec2x2)dx

It is in the form of  since here  and 


19.  

Ans. Let I = 

It is in the form of  since here  and 

 I = 


20.  

Ans. Let I = 

 I = 

It is in the form of  since here  and 

.

 I =  Ans.


21.  

Ans. Let I = 

[Applying product rule]

  I = 

[Again applying product rule]

  I = 

  I = 

  5I = 

  I =  Ans.


22.  

Ans. Putting 

 

  

[Applying product rule]

 Ans.


Choose the correct answer in Exercise 23 and 24.

23.  equals to

(A)  

(B) 

(C) 

(D) 

Ans. Let I = 

   ……….(i)

Putting 

 

 

  From eq. (i), I = 

Therefore, option (A) is correct.


24.  equals:

(A) 

(B) 

(C) 

(D) 

Ans. Let I = 

It is in the form of  since here  and 
 I = 

Therefore, option (B) is correct.