NCERT Solutions class 12 Maths Exercise 7.5 (Ex 7.5) Chapter 7 Integrals


NCERT Solutions for Class 12 Maths Exercise 7.5 hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises 7.5 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.5) Exercise 7.5



Integrate the (rational) function in Exercises 1 to 6.

1. 

Ans.  …….(i)

 

 

Comparing coefficients of  on both sides A + B = 1 …..(ii)

Comparing constants 2A + B = 0 …..(iii)

Solving eq. (ii) and (iii), we get A =  and B = 2

Putting these values of A and B in eq. (i),

 

=log|x+1|+2log|x+2|+c=−log|x+1|+2log|x+2|+c

2. 

Ans. 

3. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : A + B + C = 0 …….(ii)

Comparing coefficients of : –5A – 4B – 3C= 3

 5A + 4B + 3C = –3 …….(iii)

Comparing constants: 6A + 3B + 2C = –1 …….(iv)

On solving eq. (i), (ii) and (iii), we get A = 1, B = –5, C = 4

Putting the values of A, B and C in eq. (i),

 

 

4. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : A + B + C = 0 …….(ii)

Comparing coefficients of : –5A – 4B – 3C= 1

 5A + 4B + 3C = –1 …….(iii)

Comparing constants: 6A + 3B + 2C = 0 …….(iv)

On solving eq. (i), (ii) and (iii), we get A =  B = –2, C = 

Putting the values of A, B and C in eq. (i),

 

 

5. 

Ans. 

 ….(i)

 

 

Comparing coefficients of  on both sides A + B = 2 …….(ii)

Comparing constants 2A + B = 0 …..(iii)

Solving eq. (ii) and (iii), we get A =  and B = 4

Putting these values of A and B in eq. (i),

 

=2log|x+1|+4log|x+2|+c=−2log|x+1|+4log|x+2|+c

=4log|x+2|2log|x+1|+c=4log|x+2|−2log|x+1|+c

 

6. 

Ans. 

 (Dividing numerator by denominator)

 

 …….(i)

Now 

 …….(ii)

 

 

Comparing coefficients of  on both sides –2A + B =  …..(iii)

Comparing constants A = 1 …….(iv)

Solving eq. (ii) and (iii), we get A =  and B = 

Putting these values of A and B in eq. (ii),

 

Putting this value in eq. (i),

Integrate the following function in Exercises 7 to 12.

7. 

Ans.  …….(i)

 

 

Comparing coefficients of  A + C = 0 …….(ii)

Comparing coefficients of , –A + B = 1 …….(iii)

Comparing constant terms, –B + C = 0 …….(iv)

Solving eq. (ii), (iii) and (iv), we get A =  B =  and C = 

Putting the values of A, B and C in eq. (i), 

 

 

 

 

 

8. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : A + C = 0 …….(ii)

Comparing coefficients of : A + B – 2C= 1 …….(iii)

Comparing constants: –2A + 2B + C = 0 …….(iv)

On solving eq. (i), (ii) and (iii), we get

A =  B =  C = 

Putting the values of A, B and C in eq. (i), 

 

9. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : A + C = 0 …….(ii)

Comparing coefficients of : B – 2C= 3 …….(iii)

Comparing constants: –2A + B + C = 5 …….(iv)

On solving eq. (i), (ii) and (iii), we get A =  B = 4, C = 

Putting the values of A, B and C in eq. (i),

10. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : 2A + 2B + C = 0 …….(ii)

Comparing coefficients of : 5A + B = 2 …….(iii)

Comparing constants: 3A – 3B – C = –3 …….(iv)

On solving eq. (i), (ii) and (iii), we get A =  B =  C = 

Putting the values of A, B and C in eq. (i),

  = 

=52log|x+1|110log|x1|125log|2x+3|+c=52log|x+1|−110log|x−1|−125log|2x+3|+c

11. 

Ans. 

 …….(i)

 

 

 

Comparing coefficients of : A + +B + C = 0 …….(ii)

Comparing coefficients of : –B + 3C= 5 …….(iii)

Comparing constants: –4A – 2B + 2C = 0 …….(iv)

On solving eq. (i), (ii) and (iii), we get A =  B =  C = 

Putting the values of A, B and C in eq. (i),

=53log|x+1|52log|x+2|+56log|x2|+c=53log|x+1|−52log|x+2|+56log|x−2|+c

 

12. 

Ans. 

 …….(i)

[On dividing numerator by denominator]

Let 

 …….(ii)

 

 

Comparing coefficients of : A + B = 2 …….(iii)

Comparing constants: –A + B = 1 …….(iv)

On solving eq. (iii) and (iv), we get A =  B = 

Putting the values of A, B and C in eq. (ii), 

Putting this value in eq. (i),

 

Integrate the following function in Exercises 13 to 17.

13. 

Ans. 

 …….(i)

  = 

  = 

Comparing the coefficients of  A – B = 0 …….(ii)

Comparing the coefficients of  B – C = 0 …….(iii)

Comparing constants A + C = 2 …….(iv)

On solving eq. (ii), (iii) and (iv), we get A = 1, B = 1, C = 1

Putting these values of A, B and C in eq. (i),

 = 

 = 

14. 

Ans. Let I =  …….(i)

Putting 

 

 

 

Putting this value in eq. (i),

I = 

15. 

Ans. 

Putting 

 …..(i)

 

 

Comparing the coefficients of  A + B = 0 ……(ii)

Comparing constants A – B = 1 …….(iii)

On solving the eq. (ii) and (iii), we get A =  B = 

Putting the values of A, B and  in eq. (i),

 

16. 

Ans. Let I = 

Multiplying both numerator and denominator by ,

I = 

 ……..(i)

Putting 

 

 

 From eq. (i),

I = 

17. 

Ans. Let I =  …….(i)

Putting 

 

 

 From eq. (i), I = 

Integrate the following function in Exercises 18 to 21.

18. 

Ans.  …….(i)

Putting 

 …….(ii)

Dividing numerator by denominator,

 ….(iii)

Let  …….(iv)

 

 

Comparing coefficients of  A + B = –4 …….(v)

Comparing constants 4A + 3B = –10 …….(vi)

On solving eq. (v) and (vi), we get A = 2, B = –6

Putting the values of A, B and  in eq. (iii),

19. 

Ans. Let I =  …….(i)

Putting   

 From eq. (i),

I = 

20. 

Ans. Let I = 

…(i)

Putting 

 

 

Putting this value in eq. (i),

I = 

I = 

21. 

Ans. Let I =  …….(i)

Putting 

 

 

 

 From eq. (i),

I = 

Choose the correct answer in each of the Exercise 22 and 23.

22.  equals:

(A) 

(B) 

(C) 

(D) 

Ans. Let  …….(i)

 

 

Comparing coefficients of  A + B = 1 …….(ii)

Comparing constants –2A – B = 0 …….(iii)

On solving eq. (ii) and (iii), we get A = –1, B = 2

Putting these values of A and B in eq. (i),

 

Therefore, option (B) is correct.

23.  equals:

(A) 

(B) 

(C) 

(D) 

Ans. Let I = 

 …(i)

Putting 

 

 

Putting this value in eq. (i),

I = 

I = 

Therefore, option (A) is correct.