NCERT Solutions class 12 Maths Exercise 7.4 (Ex 7.4) Chapter 7 Integrals


NCERT Solutions for Class 12 Maths Exercise 7.4 hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises 7.4 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.4) Exercise 7.4



Integrate the following functions in Exercises 1 to 9.

1.  

Ans. Let I = 

 ……….(i)

Putting 

  

 

  From eq. (i),

I = 

           using 1a2+x2dx=1atan1xa+c∫1a2+x2dx=1atan−1xa+c

  Ans.


2.  

Ans. 

=


3.  

Ans. 

=log∣∣∣12x+x24x+5∣∣∣+c=log⁡|12−x+x2−4x+5|+c


4.  

Ans. 


5.  

Ans. Let I = 

 ……….(i)

Putting 

  

 

  From eq. (i),

I = 

=322tan12–√t+c=322tan−12t+c

=322tan12–√x2+c=322tan−12×2+c Ans.


6.  

Ans. Let I = 

 ……….(i)

Putting 

 

 

From eq. (i),

I = 

=131(1)2(t)2dt=13∫1(1)2−(t)2dt


7.  

Ans. Let I = 

=122xx21dxlog∣∣∣x+(x2(1)2)−−−−−−−−−√∣∣∣=12∫2xx2−1dx−log⁡|x+(x2−(1)2)|

Let I1 = 

Putting 

 

 

 I1 =  =  =  = 

 I = 

 I =  where 


8.  

Ans. Let I = 

……….(i)

Putting 

  

 

  From eq. (i),

I = 


9.  

Ans. Let I = ……….(i)

Putting 

 

 

  From eq. (i),

I = 


Integrate the following functions in Exercises 10 to 18.

10.  

Ans. 1x2+2x+2dx∫1×2+2x+2dx

1x2+2x+1+1dx∫1×2+2x+1+1dx

1(x+1)2+(1)2dx∫1(x+1)2+(1)2dx


11.  

Ans. 

[For making completing the squares]


12.  

Ans. 

1(x+3)2+16dx∫1−(x+3)2+16dx

1(4)2(x+3)2dx∫1(4)2−(x+3)2dx


13. 

Ans. 

=  

=  


14.  

Ans. 

=  

=  


15.  

Ans. 


16.  

Ans. Let I =  ……….(i)

Putting 

 

 

 From eq. (i),

I = 


17.  

Ans. Let I = 

 …….(i)

Let I1 = 

Putting 

 

I1 = 

Putting this value in eq. (i),


18.  

Ans. Let I =  ……….(i)

Let numerator=Addx(denominator)+Bnumerator=Addx(denominator)+B

 ……(ii)

 

Comparing coefficients of  6A = 5

 A = 

Comparing constants,

2A + B = 

On solving, we get A = , B = 

Putting the values of A and B in eq. (ii),

Putting this value of  in eq. (i),

I = 

I = 

 I =  ……….(iii)

Now I1 = 

Putting 

 

 

I1 =  =  =  ……….(iv)

Again I2 =

131[(x+13)2+(23)2]dx13∫1[(x+13)2+(23)2]dx

 ……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


Integrate the following functions in Exercises 19 to 23.

19. 

Ans. Let I = 

 ……….(i)

Let     Linear = A  (Quadratic) + B

  ……(ii)

 

Comparing coefficients of  2A = 6  A = 3

Comparing constants, –9A + B = 7

On solving, we get A = 3, B = 34

Putting the values of A and B in eq. (ii),

Putting this value of  in eq. (i),

I = 

I = 

 I = ……….(iii)

Now I1 = 

Putting 

 

 

I1 = 

 = 

 ……….(iv)

Again I2 =

 ……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


20.  

Ans. Let I =  ……….(i)

Let Linear = A  (Quadratic) + B

 ……(ii)

 

Comparing coefficients of  –2A = 1  A = 

Comparing constants, 4A + B = 2

On solving, we get A = B = 4

Putting the values of A and B in eq. (ii),

Putting this value of  in eq. (i),

I = 

I = 

 I =  ……….(iii)

Now I1 = 

Putting 

 

 

 I1 =  = 

 = 

…….(iv)

Again I2 =

1x2+4xdx∫1−x2+4xdx

1(x24x)dx∫1−(x2−4x)dx

1(x24x+44)dx∫1−(x2−4x+4−4)dx

1[(x2)2(2)2]dx∫1−[(x−2)2−(2)2]dx

1(2)2(x2)2dx∫1(2)2−(x−2)2dx

……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


21.  

Ans. Let I = 

Let Linear = A  (Quadratic) + B

 ……(ii)

 

Comparing coefficients of  2A = 1  A = 

Comparing constants, 2A + B = 2

On solving, we get A = B = 1

Putting the values of A and B in eq. (ii),

Putting this value of  in eq. (i),

I = 

I = 

 I =  ……….(iii)

Now I1 = 

Putting 

 

 

I1 =  = 

 = 

 ……….(iv)

Again I2 =

log∣∣∣x+1+(x+1)2+(2–√)2−−−−−−−−−−−−−−√∣∣∣log⁡|x+1+(x+1)2+(2)2|

 ……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


22.  

Ans. Let I =  ……….(i)

Let Linear = A  (Quadratic) + B

 ……(ii)

 

Comparing coefficients of  2A = 1

 A = 

Comparing constants, –2A + B = 3

On solving, we get A = B = 4

Putting the values of A and B in eq. (ii),  

Putting this value of  in eq. (i),

I = 

I = 

 I =  ……….(iii)

Now I1 = 

Putting 

 

 

I1 =  = 

 ……….(iv)

Again I2 =

……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


23.  

Ans. Let I = ……….(i)

Let Linear = A  (Quadratic) + B

 

  ……(ii)

 

Comparing coefficients of  2A = 5  A = 

Comparing constants, 4A + B = 3

On solving, we get A = B = 

Putting the values of A and B in eq. (ii),

Putting this value of  in eq. (i),

I = 

I = 

 I = 52I17I252I1−7I2……….(iii)

Now I1 = 

Putting 

 

 

I1 = 

 = 

……….(iv)

Again I2 =

log∣∣∣x+2+(x+2)2+(6–√)2−−−−−−−−−−−−−−√∣∣∣log⁡|x+2+(x+2)2+(6)2|

 ……….(v)

Putting values of I1 and I2 in eq. (iii),

I = 


Choose the correct answer in Exercise 24 and 25.

24.  equals

(A)  

(B)  

(C)  

(D) 

Ans. 

Therefore, option (B) is correct.


25.  equals

(A) 

(B) 

(C)  

(D) 

Ans. Let I = 

14x2+9xdx∫1−4×2+9xdx

14(x294x)dx∫1−4(x2−94x)dx

14(x294x+(98)2(98)2)dx∫1−4(x2−94x+(98)2−(98)2)dx

14[(x98)2+(98)2]dx∫1−4[(x−98)2+(98)2]dx

14[(98)2(x98)2]dx∫14[(98)2−(x−98)2]dx

121[(98)2(x98)2]dx12∫1[(98)2−(x−98)2]dx

Therefore, option (B) is correct.