NCERT Solutions for Class 12 Maths Exercise 7.3 hapter 7 Integrals – FREE PDF Download
NCERT Solutions for integrals Class 12 exercises 7.3 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.
NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.3) Exercise 7.3
Find the integrals of the following functions in Exercises 1 to 9.
1.
=
Using sin2θ=1−cos2θ2sin2θ=1−cos2θ2
=
=
Using∫cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin(ax+b)a+c
=12[x−sin(4x+10)4]+c=12[x−sin(4x+10)4]+c
=
2.
= =12∫{sin(4x+3x)−sin(4x−3x)}dx=12∫{sin(4x+3x)−sin(4x−3x)}dx Using 2sinB cosA=sin(A+B)-sin(A-B)
=
=
=
=
3.
=
=
Using 2cosA cosB=cos(A+B)+cos(A-B)
=
=
=
Using 2cosA cosB=cos(A+B)+cos(A-B)
and 2cos2θ=1+cos2θ2cos2θ=1+cos2θ
=
=
4.
=
=
=
=
=
Another Method
=∫Sin2(2x+1)Sin(2x+1)dx=∫Sin2(2x+1)Sin(2x+1)dx
=∫(1−cos2(2x+1))Sin(2x+1)dx=∫(1−cos2(2x+1))Sin(2x+1)dx
Using sin2θ=1−cos2θsin2θ=1−cos2θ
let cos(2x+1)=tcos(2x+1)=t
therefore −2sin(2x+1)dx=dt−2sin(2x+1)dx=dt
thus sin(2x+1)dx=−12dtsin(2x+1)dx=−12dt
=−12∫(1−t2)dt=−12∫(1−t2)dt
=−12(∫1dt−∫t2dt)=−12(∫1dt−∫t2dt)
=−12(t−t33)+c=−12(t−t33)+c
=−12Cos(2x+1)+16Cos3(2x+1)+c=−12Cos(2x+1)+16Cos3(2x+1)+c Ans
5.
=
=
=
=
=
=
=
=
Another method let I=
I=∫(1−cos2x)cos3xsinxdxI=∫(1−cos2x)cos3xsinxdx
=∫(cos3x−cos5x)sinxdx=∫(cos3x−cos5x)sinxdx
let cosx=t
-sinx dx=dt
sinx dx = -dt
I=−∫(t3−t5)dtI=−∫(t3−t5)dt
I=∫(t5−t3)dtI=∫(t5−t3)dt
=t66−t44+c=t66−t44+c
=cos66−cos44+c=cos66−cos44+c
6.
=
= Using 2sin A sin B=cos (A-B) – cos ( A+B)
=12∫(cosxsinx−cos5xsinx)dx)=12∫(cosxsinx−cos5xsinx)dx)
=14∫(2cosxsinx−2cos5xsinx)dx)=14∫(2cosxsinx−2cos5xsinx)dx)
==14∫(2sinxcosx−{sin(5x+x)−sin(5x−x)})dx=14∫(2sinxcosx−{sin(5x+x)−sin(5x−x)})dx
using 2cosA sinB=sin(A+B)-sin(A-B)
=
=
as ∫sin(ax+b)dx=−cos(ax+b)a+c∫sin(ax+b)dx=−cos(ax+b)a+c
= Ans
7.
= Using 2sinA sinB= cos(A-B)-cos(A+B)
=12∫(cos(4x−8x)−cos(4x+8x))dx=12∫(cos(4x−8x)−cos(4x+8x))dx
=
=
As cos(-x)=cosx
=
= Ans. As ∫cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin(ax+b)a+c
8.
=
As 2sin2θ2=1−cosθ2cos2θ2=1+cosθ2sin2θ2=1−cosθ2cos2θ2=1+cosθ
=
=
=
As ∫sec2(ax+b)dx=tan(ax+b)a+c∫sec2(ax+b)dx=tan(ax+b)a+c
=
9.
=
=
=
As 2cos2θ2=1+cosθ2cos2θ2=1+cosθ
=
as∫sec2(ax+b)dx=tan(ax+b)a+c∫sec2(ax+b)dx=tan(ax+b)a+c
=
=
Find the integrals of the following functions in Exercises 10 to 18.
10.
=
=
as 2sin2θ=1−cos2θ2sin2θ=1−cos2θ
=
=
=
as 2cos22θ=1+cos4θ2cos22θ=1+cos4θ
=
=
=
=
As ∫cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin(ax+b)a+c
= Ans
11.
=
=
As 2cos22θ=1+cos4θ2cos22θ=1+cos4θ
=
=
=
as 2cos24θ=1+cos8θ2cos24θ=1+cos8θ
=
=
=
=
using ∫cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin(ax+b)a+c
=
12.
=
=
=
=
=
13.
=
using cos2θ=2cos2θ−1cos2θ=2cos2θ−1
=
=
=
=
=
=
=
=
=
14.
=
using identity 1=sin2θ+cos2θ1=sin2θ+cos2θ
= …..(i)
Putting
From eq. (i), I =
=
=
=
=
15.
=
=
=
Putting
From eq. (i),
I =
=
=
=
=
16.
=
=
=
= ……….(i)
Putting
From eq. (i),
=
=
=
17.
=
=
=
=
=
=
18.
=
using cos2θ=1−2sin2θcos2θ=1−2sin2θ
=
=
=
Integrate the following functions in Exercises 19 to 22.
19.
Dividing numerator and denominator by cos4θcos4θ
=∫1/cos4xdxsinx/cosx=∫1/cos4xdxsinx/cosx
I=∫sec4xdxtanxI=∫sec4xdxtanx
=
I=∫(1+tan2x)sec2xdxtanxI=∫(1+tan2x)sec2xdxtanx ……….(ii)
Putting
From eq. (ii),
I =
=
=
=
=
=
20.
=
=
= ……….(i)
Putting
From eq. (i),
I =
=
=
21.
=
=
=
=
=
22.
Multiplying and dividing by
as ,
I =
=
=
using sin(A-B)=sinAcosB-cosAsinB
=
=
=
=
Choose the correct answer in Exercise 23 and 24.
23. is equal to:
(A)
(B)
(C)
(D)
=
=
=
=
=
=
Therefore, option (A) is correct.
24. is equal to:
(A)
(B)
(C)
(D)
Putting
From eq. (i),
I =
=
=
=
Therefore, option (B) is correct.