NCERT Solutions class 12 Maths Exercise 7.3 (Ex 7.3) Chapter 7 Integrals


NCERT Solutions for Class 12 Maths Exercise 7.3 hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises 7.3 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.3) Exercise 7.3



Find the integrals of the following functions in Exercises 1 to 9.

1. 

Ans.  

Using sin2θ=1cos2θ2sin2θ=1−cos⁡2θ2

Usingcos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin⁡(ax+b)a+c

=12[xsin(4x+10)4]+c=12[x−sin⁡(4x+10)4]+c


2. 

 

Ans.   =  

=12{sin(4x+3x)sin(4x3x)}dx=12∫{sin(4x+3x)−sin(4x−3x)}dx       Using 2sinB cosA=sin(A+B)-sin(A-B)


3. 

 

Ans.  

Using 2cosA cosB=cos(A+B)+cos(A-B)

Using 2cosA cosB=cos(A+B)+cos(A-B)

and    2cos2θ=1+cos2θ2cos2θ=1+cos2θ


4. 

 

Ans.  

Another Method   

=Sin2(2x+1)Sin(2x+1)dx=∫Sin2(2x+1)Sin(2x+1)dx

=(1cos2(2x+1))Sin(2x+1)dx=∫(1−cos2(2x+1))Sin(2x+1)dx

Using sin2θ=1cos2θsin2θ=1−cos2θ

let  cos(2x+1)=tcos⁡(2x+1)=t

therefore  2sin(2x+1)dx=dt−2sin⁡(2x+1)dx=dt

thus sin(2x+1)dx=12dtsin⁡(2x+1)dx=−12dt

=12(1t2)dt=−12∫(1−t2)dt

=12(1dtt2dt)=−12(∫1dt−∫t2dt)

=12(tt33)+c=−12(t−t33)+c

=12Cos(2x+1)+16Cos3(2x+1)+c=−12Cos(2x+1)+16Cos3(2x+1)+c    Ans


5. 

 

Ans.  

Another method   let   I=    

I=(1cos2x)cos3xsinxdxI=∫(1−cos2x)cos3xsin⁡xdx

=(cos3xcos5x)sinxdx=∫(cos3x−cos5x)sin⁡xdx

let cosx=t

-sinx dx=dt

sinx  dx = -dt

I=(t3t5)dtI=−∫(t3−t5)dt

I=(t5t3)dtI=∫(t5−t3)dt

=t66t44+c=t66−t44+c

=cos66cos44+c=cos66−cos44+c


6. 

 

Ans.  

         Using 2sin A sin B=cos (A-B) – cos ( A+B)

=12(cosxsinxcos5xsinx)dx)=12∫(cos⁡xsin⁡x−cos⁡5xsin⁡x)dx)

=14(2cosxsinx2cos5xsinx)dx)=14∫(2cos⁡xsin⁡x−2cos⁡5xsin⁡x)dx)

==14(2sinxcosx{sin(5x+x)sin(5xx)})dx=14∫(2sin⁡xcos⁡x−{sin⁡(5x+x)−sin⁡(5x−x)})dx

using 2cosA sinB=sin(A+B)-sin(A-B)

as sin(ax+b)dx=cos(ax+b)a+c∫sin⁡(ax+b)dx=−cos⁡(ax+b)a+c

=     Ans


7. 

 

Ans.  

         Using 2sinA sinB= cos(A-B)-cos(A+B)

=12(cos(4x8x)cos(4x+8x))dx=12∫(cos(4x−8x)−cos(4x+8x))dx

As    cos(-x)=cosx

   Ans.    As  cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin⁡(ax+b)a+c


8. 

 

Ans.  

As  2sin2θ2=1cosθ2cos2θ2=1+cosθ2sin2θ2=1−cosθ2cos2θ2=1+cos⁡θ

As    sec2(ax+b)dx=tan(ax+b)a+c∫sec2(ax+b)dx=tan⁡(ax+b)a+c


9. 

 

Ans.  

As   2cos2θ2=1+cosθ2cos2θ2=1+cos⁡θ

assec2(ax+b)dx=tan(ax+b)a+c∫sec2(ax+b)dx=tan⁡(ax+b)a+c


Find the integrals of the following functions in Exercises 10 to 18.

 

10. 

Ans.  

as  2sin2θ=1cos2θ2sin2θ=1−cos2θ

as 2cos22θ=1+cos4θ2cos22θ=1+cos4θ

As cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin⁡(ax+b)a+c

    Ans


11. 

 

Ans.  

As     2cos22θ=1+cos4θ2cos22θ=1+cos4θ

as  2cos24θ=1+cos8θ2cos24θ=1+cos8θ

using  cos(ax+b)dx=sin(ax+b)a+c∫cos(ax+b)dx=sin⁡(ax+b)a+c


12. 

 

Ans.  


13. 

 

Ans.  

using cos2θ=2cos2θ1cos⁡2θ=2cos2θ−1


14. 

 

Ans. Let I =  

using identity 1=sin2θ+cos2θ1=sin2θ+cos2θ

 …..(i)

Putting 

 

 

 From eq. (i), I = 


15. 

 

Ans. Let I =  

Putting 

 

 

 From eq. (i),

I = 


16. 

 

Ans.  

……….(i)

Putting 

 

 

 From eq. (i),


17. 

 

Ans.  


18. 

 

Ans.  

using  cos2θ=12sin2θcos⁡2θ=1−2sin2θ


Integrate the following functions in Exercises 19 to 22.

 

19. 

Ans. Let I =  ……….(i) 

Dividing numerator and denominator by cos4θcos4θ

=1/cos4xdxsinx/cosx=∫1/cos4xdxsin⁡x/cos⁡x

I=sec4xdxtanxI=∫sec4xdxtan⁡x

I=(1+tan2x)sec2xdxtanxI=∫(1+tan2x)sec2xdxtan⁡x ……….(ii)

Putting 

 

 

 From eq. (ii),

I = 


20. 

 

Ans. Let I =  

 ……….(i)

Putting 

 

 

 From eq. (i),

I = 


21. 

 

Ans.  


22. 

 

Ans. Let I =  ……….(i) 

Multiplying and dividing by

 as ,

I = 

using sin(A-B)=sinAcosB-cosAsinB


Choose the correct answer in Exercise 23 and 24.

 

23.  is equal to:

(A) 

(B) 

(C) 

(D) 

Ans.  

Therefore, option (A) is correct.


24.  is equal to:

 

(A) 

(B) 

(C) 

(D) 

Ans. Let I =  ……….(i) 

Putting 

 

 

 From eq. (i),

I = 

Therefore, option (B) is correct.