NCERT Solutions class 12 Maths Exercise 7.1 (Ex 7.1) Chapter 7 Integrals


NCERT Solutions for Class 12 Maths Exercise 7.1 hapter 7 Integrals – FREE PDF Download

NCERT Solutions for integrals Class 12 exercises 7.1 are accessible in PDF format which is available at CoolGyan’s online learning portal. The solutions to this particular exercise from chapter 7 Integrals have been prepared by our experts who have years of experience in this field. Students can find, well-explained solutions to maths problems at CoolGyan’s online learning portal. All the solutions are provided in a way that will help you in understanding the concept effectively. You can download them in PDF format for free.

NCERT Solutions for Class 12 Maths Chapter 7 Integrals (Ex 7.1) Exercise 7.1



Find an antiderivative (or integral) of the following functions by the method of inspection in Exercises 1 to 5.

1.  

Ans.  

 

  An anti-derivative of  is 


2. 

 

Ans.  

 

  An anti-derivative of  is 


3. 

 

Ans.   

 

 

 An anti-derivative of  is 


4. (ax+b)2(ax+b)2

 

Ans.   

 

 

 An anti-derivative of  is 


5. 

 

Ans.  

  …..(i)

Again 

 

  [Multiplying both sides by ] ……….(ii)

Adding eq. (i) and (ii), we get

 

 

 An anti-derivative of  is 


Evaluate the following integrals in Exercises 6 to 11.

 

6.  

Ans.  

 


7. 

 

Ans.  =  =  =  

 


8. 

 

Ans.  

 where  is the constant of integration.


9. 

 

Ans.  


10. 

 

Ans.  

{(x−−√)2+(1x)22x−−√1x}dx∫{(x)2+(1x)2−2x1x}dx


11. 

 

Ans.  


Evaluate the following integrals in Exercises 12 to 16.

 

12. 

Ans.  


13. 

 

Ans.  


14. 

 

Ans.  

 = 


15. 

 

Ans.  


16. 

 

Ans.  


Evaluate the following integrals in Exercises 17 to 20.

 

17.  

Ans.  


18. 

 

Ans.  


19. 

 

Ans.  


20.  

 

Ans.  


21. Choose the correct answer:

 

The anti derivative of  equals.

(A) 

(B) 

(C) 

(D) 

Ans.  

Therefore, option (C) is correct.


22. Choose the correct answer:

 

If  such that  Then  is:

(A) 

(B) 

(C) 

(D) 

Ans.  

   ……….(i)

 

 

 

 

Putting  in eq. (i),

Therefore, option (A) is correct.