NCERT Solutions class 12 Maths Exercise 5.7 (Ex 5.7) Chapter 5 Continuity and Differentiability


NCERT Solutions for Class 12 Maths Exercise 5.7 Chapter 5 Continuity and Differentiability – FREE PDF Download

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.7 (Ex 5.7) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.7 Questions with Solutions to help you to revise complete Syllabus and Score More marks.

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.7 (Ex 5.7)



Find the second order derivatives of the functions given in Exercises 1 to 5.

1. 

 

Ans.  Let  

 

 


2.  

 

 

Ans. Let  

 

 


3.  

 

 

Ans. Let  

  = 

 


4.  

 

 

Ans. Let  

 

       

  = 


5.  

 

 

Ans. Let  

 

 


Find the second order derivatives of the functions given in Exercises 6 to 10.

 

6.  

 

Ans. Let  

 

 

=ex[5(sin5x)×5+(cos5x)×5]+(5cos5x+sin5x)ex=ex[5(−sin5x)×5+(cos5x)×5]+(5cos5x+sin5x)ex


7.  

 

 

Ans. Let  

 

e6x(3sin3x+6cos3x)e6x(−3sin⁡3x+6cos⁡3x)

 


8.  

 

 

Ans. Let  

 

 

 = 


9.  

 

 

Ans.  Let  

  

 

[x.1x+logx×1](xlogx)2−[x.1x+log⁡x×1](xlog⁡x)2

[1+logx](xlogx)2−[1+log⁡x](xlog⁡x)2


10.  

 

 

Ans. Let  

 

 = 

 


11. If  prove that  

 

 

Ans. Let   …….(i) 

 

 

 =  [From eq. (i)]


12. If  Find  in terms of  alone.

 

 

Ans. Given:  

    ……….(i)

 

 [From eq. (i)]

 ……….(ii)

 

[From eq. (ii)]


13. If  show that  

 

 

Ans. Given:      ….(i) 

 

   = 

  

Now 

 

 

 

   [From eq. (i)]

  Hence proved.


14. If  show that  

 

 

Ans.  Given:     ….(i) 

To prove: 

   

          ….(ii)

Again   
   ….(iii)

Now,   L.H.S.=
Am2emx+Bn2enx(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)Am2emx+Bn2enx−(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)

Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+BmnenxAm2emx+Bn2enx−Am2emx−Bmnenx−Amnemx−Bn2enx+Amnemx+Bmnenx

= 0

= R.H.S.            Hence proved.


15. If  show that  

 

 

Ans. Given: ……….(i) 

  = 500(7)e7x600(7)e7x500(7)e7x−600(7)e−7x

 d2ydx2=500(7)e7x(7)600(7)e7x(7)d2ydx2=500(7)e7x(7)−600(7)e−7x(−7) = 500(49)e7x+600(49)e7x500(49)e7x+600(49)e−7x

 d2ydx2=49[500e7x+600e7x]d2ydx2=49[500e7x+600e−7x]

  [From eq. (i)]

  =   Hence proved.


16. If  show that  

 

 

Ans. Given:  

 

Taking log on both sides,      

 

  = 

And   

 

Now, L.H.S. = 

And R.H.S. = 

 L.H.S. = R.H.S.         Hence proved.


17. If  show that  

 

 

Ans. Given:       ……….(i) 

  

And 

  

Again  differentiating both sides w.r.t. 

 

        Hence proved.