NCERT Solutions class 12 Maths Exercise 2.1 Ch 2 Inverse Trigonometric Functions


NCERT Solutions for Class 12 Maths Exercise 2.1 Chapter 2 Inverse Trigonometric Functions – FREE PDF Download

NCERT Class 12 Maths Ch 2 is one of the most important ones in the NCERT syllabus. Duly following NCERT Solutions for Class 12 Maths Chapter 2 ensures you that there will be no hindrance when you opt for more advanced branches of Maths. This is where CoolGyan comes in. Our free Class 12 inverse trigonometry solutions will help you understand the chapter thoroughly.

NCERT Solutions for Class 12 Maths Chapter 2 – Inverse Trigonometric Functions



Find the principal values of the following:

1. 

Ans. Let  

 

 

 

Since, the principal value branch of  is 

Therefore, Principal value of  is 


2. 

 

Ans. Let 


 
Since, the principal value branch of  is 
Therefore, Principal value of   is  


3. 

 

Ans. Let 
 
 
Since, the principal value branch of  is [π2,π2]{0}.[−π2,π2]−{0}.
Therefore, Principal value of   is  


4. 

 

Ans. Let  

 
 
 
Since, the principal value branch of  is 
Therefore, Principal value of   is 


5. 

 

Ans. Let  

 

 

 

Since, the principal value branch of  is 

Therefore,  Principal value of   is 


6. 

 

Ans. Let  

 

 

 

Since, the principal value branch of  is 

Therefore, Principal value of   is 


7. 

 

Ans. Let  

 

 

Since, the principal value branch of  is 

Therefore, Principal value of   is 


8. 

 

Ans. Let  

 

 coty=cotπ6cot⁡y=cot⁡π6

Since, the principal value branch of  is 

Therefore, Principal value of   is 


9. 

 

Ans. Let  

 

 

 

Since, the principal value branch of  is 

Therefore, Principal value of   is 


10. 

 

Ans. Let  

 

 

Since, the principal value branch of  is 

Therefore, Principal value of   is 


Find the value of the following:

 

11. 

Ans.  

=π4+cos1(cos(ππ3))+sin1(sin(π6))=π4+cos−1(cos⁡(π−π3))+sin−1(sin⁡(−π6))

 = 


12. 

 

Ans. 


 


13. If   then:

 

A) 

(B) 

(C) 

(D)

Ans. By definition of principal value for  
Therefore, option (B) is correct. 


14.   is equal to:

 

(A) 

(B) 

(C) 

(D) 

Ans. 



Therefore, option (B) is correct.