# NCERT Solutions class 12 Maths Exercise 2.1 Ch 2 Inverse Trigonometric Functions

## NCERT Solutions for Class 12 Maths Exercise 2.1 Chapter 2 Inverse Trigonometric Functions – FREE PDF Download

NCERT Class 12 Maths Ch 2 is one of the most important ones in the NCERT syllabus. Duly following NCERT Solutions for Class 12 Maths Chapter 2 ensures you that there will be no hindrance when you opt for more advanced branches of Maths. This is where CoolGyan comes in. Our free Class 12 inverse trigonometry solutions will help you understand the chapter thoroughly.

# NCERT Solutions for Class 12 Maths Chapter 2 – Inverse Trigonometric Functions

Find the principal values of the following:

1.

Ans. Let

Since, the principal value branch of  is

Therefore, Principal value of  is

### 2.

Ans. Let

Since, the principal value branch of  is
Therefore, Principal value of   is

### 3.

Ans. Let

Since, the principal value branch of  is [π2,π2]{0}.[−π2,π2]−{0}.
Therefore, Principal value of   is

### 4.

Ans. Let

Since, the principal value branch of  is
Therefore, Principal value of   is

### 5.

Ans. Let

Since, the principal value branch of  is

Therefore,  Principal value of   is

### 6.

Ans. Let

Since, the principal value branch of  is

Therefore, Principal value of   is

### 7.

Ans. Let

Since, the principal value branch of  is

Therefore, Principal value of   is

### 8.

Ans. Let

coty=cotπ6cot⁡y=cot⁡π6

Since, the principal value branch of  is

Therefore, Principal value of   is

### 9.

Ans. Let

Since, the principal value branch of  is

Therefore, Principal value of   is

### 10.

Ans. Let

Since, the principal value branch of  is

Therefore, Principal value of   is

### Find the value of the following:

11.

Ans.

=π4+cos1(cos(ππ3))+sin1(sin(π6))=π4+cos−1(cos⁡(π−π3))+sin−1(sin⁡(−π6))

=

Ans.

### 13. If   then:

A)

(B)

(C)

(D)

Ans. By definition of principal value for
Therefore, option (B) is correct.

### 14.   is equal to:

(A)

(B)

(C)

(D)

Ans.

Therefore, option (B) is correct.