NCERT Solutions class 10 Maths Exercise 8.4 Ch 8 Introduction to Trigonometry


NCERT Solutions for Class 10 Maths Exercise 8.4 Chapter 8 Introduction to Trigonometry – FREE PDF Download

NCERT Class 10 Maths Ch 8 is one of the most important ones in the NCERT syllabus. Duly following NCERT Solutions for Class 10 Maths
Chapter 8 ensures you that there will be no hindrance when you opt for more advanced branches of Maths. This is where CoolGyan comes in. Our free Class 10 Introduction to Trigonometry solutions will help you understand the chapter thoroughly.

NCERT Solutions for Class 10 Maths Chapter 8 – Introduction to Trigonometry



1. Express the trigonometric ratios  and  in terms of 

Ans. For  

By using identity 

 

 

 

For 

By using identity 

 

  = 

 

 

For 


2. Write the other trigonometric ratios of A in terms of 

Ans. For  

By using identity, 

 

  = 

 

For 

For 

By using identity 

 

 

For 

 = 

 

For 

 


3. Evaluate:

(i) 

(ii) 

Ans. (i)  

 

(ii)

 = 1


4. Choose the correct option. Justify your choice:

(i)  =

(A) 1

(B) 9

(C) 8

(D) 0

(ii)  =

(A) 0

(B) 1

(C) 2

(D) none of these

(iii)  =

(A) 

(B) 

(C) 

(D) 

(iv)  =

(A) 

(B) 

(C) 

(D) none of these

Ans. (i) (B)  

          [Since sec2θtan2θ=1sec2θ−tan2θ=1]

(ii) (C) 

 = 2

(iii)(D) 

           [Since (a+b)(ab)=a2b2(a+b)(a−b)=a2−b2]

 

(iv)(D)  = 

 = 

 = 


5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(i) 

(ii) 

(iii) 

(iv) 

 

(v) , using the identity 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

Ans. (i) L.H.S. 

          [Since (ab)2=a2+b22ab(a−b)2=a2+b2−2ab]

 

 = R.H.S.

(ii) L.H.S. 

 = 

 =  = R.H.S

(iii) L.H.S. 

sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθsin⁡θcos⁡θsin⁡θ−cos⁡θsin⁡θ+cos⁡θsin⁡θcos⁡θ−sin⁡θcos⁡θ

1sinθcosθ+sinθcosθsinθcosθ1sin⁡θcos⁡θ+sin⁡θcos⁡θsin⁡θcos⁡θ

 = 

(iv) L.H.S.  = cosA+1cosA1cosAcos⁡A+1cos⁡A1cos⁡A

 = 

          [Since (a+b)(ab)=a2b2(a+b)(a−b)=a2−b2]

 = R.H.S.

(v) L.H.S. 

Dividing all terms by 

 = 

          [Since cosec2θcot2θ=1cos⁡ec2θ−cot2θ=1]

(cotA+cosecA)+(cotA+cosecA)(cotAcosecA)(1+cotAcosecA)(cot⁡A+cos⁡ecA)+(cot⁡A+cos⁡ecA)(cot⁡A−cos⁡ecA)(1+cot⁡A−cos⁡ecA)

 = R.H.S.

(vi) L.H.S. 

 = 

 = R.H.S.

(vii) L.H.S. 

 = 

 = R.H.S

(viii) L.H.S. 

= R.H.S.

(ix) L.H.S. 

 = 

Dividing all the terms by ,



 = R.H.S.
(x) L.H.S.  = 

 =  = R.H.S.
Now, Middle side =  = 

(1tanA(1tanA)tanA)2(1−tan⁡A−(1−tan⁡A)tan⁡A)2 = 
 = R.H.S.