Important Questions for CBSE Class 11 Maths Chapter 3 - Trigonometric Functions
CBSE Class 11 Maths Chapter-3 Important Questions - Free PDF Download
1 Marks Questions
1. Find the radian measure corresponding to 5° 37" 30""
Ans.
2. Find the degree measure corresponding to
Ans. 39°22"30""
3. Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15°
Ans.
4. Find the value of
Ans.
5. Find the value of sin(–1125°)
Ans.
6. Find the value of tan 15°
Ans.
7. If sin A = and < A < , find cos A
Ans.
8. If tan A = and tan B = then find the value of A + B.
Ans.
9. Express sin 12θ + sin 4θ as the product of sines and cosines.
Ans. 2 sin8θ cos4θ
10. Express 2 cos4x sin2x as an algebraic sum of sines or cosines.
Ans. sin 6x – sin2x
11. Write the range of cos θ
Ans. [–1,1]
12. What is domain of sec θ?
Ans.
13.Find the principal solutions of cotx = 3
Ans.
14. Write the general solution of cos θ = 0
Ans.
15. If sinx = and 0 < x < find the value of cos 2x
Ans.
16. If cosx = and x lies in quadrant III, find the value of sin
Ans.
17.Convert into radian measures. – 470 30ʹ
Ans. - 470 30ʹ = -
18.Evaluate tan 750.
Ans. tan 75 = tan (45 + 30)
19.Prove that Sin (40 + θ). Cos (10 + θ) – Cos (40 + θ). Sin (10 + θ) =
Ans. L. H. S = Sin (40 + θ). Cos (10 + θ) – Cos (40 + θ). Sin (10 +θ)
= Sin
20.Find the principal solution of the eq. Sin x =
Ans.Sin x =
21.Prove that
Ans. L. H. S = Cos
22.Convert into radian measures. -370 30’
Ans. - 370 30’ = -
23.Prove Sin (n+1) x Sin (n+2) x + Cos (n+1) x. Cos (n+2) x = Cos x
Ans.L.H.S = Cos (n+1) x Cos (n+2) x + Sin (n+1) x Sin (n+2) x
=Cos
=Cos x
24.Find the value of Sin
Ans. Sin = Sin
= sin
= Sin
=
25.Find the principal solution of the eq. tan x =
Ans. tan x =
26.Convert into radian measures.
Ans. 50 371 3011 = 50 +
27.Prove Cos 700. Cos 100 + Sin 700. Sin 100 =
Ans. L. H. S. = Cos (70 – 10) = Cos 60 =
28.Evaluate 2 Sin
Ans.2 Sin
29.Find the solution of Sin x =
Ans.Sin x =
30.Prove that
Ans.L. H. S = tan 360
31.Find the value of tan
Ans.
32.Prove Cos 4x = 1 – 8 Sin2 x. Cos2x
Ans. L. H. S = Cos 4x
33.Prove
Ans.L. H. S =
34.Prove that tan 560 =
Ans.L. H. S = tan 560
= tan (450 + 110)
35.Prove that Cos 1050 + Cos 150 = Sin 750 – Sin 150
Ans.L. H. S = Cos 1050 + Cos 150
36.Find the value of Cos (- 17100).
Ans. Cos (-17100) = Cos (1800-90)[Cos (-θ) = Cos θ
= Cos [5 360 +90]
= Cos = 0
37.A wheel makes 360 revolutions in 1 minute. Through how many radians does it turn in 1 second.
Ans.N. of revolutions made in 60 sec. = 360
N. of revolutions made in 1 sec =
Angle moved in 6 revolutions = 2 π 6 = 12 π
38.Prove Sin2 6x – Sin2 4x = Sin2 x. Sin 10 x.
Ans.L. H. S = Sin2 6x – Sin2 4x
= Sin (6x + 4x). Sin (6x – 4x)
= Sin 10x . Sin 2x
39.Prove that
Ans.L. H. S = tan (69 + 66)
= tan (135)
= tan (90 + 45)
= - tan 45
= -1
40.Prove that
Ans.L. H. S
= tan
4 Marks Questions
Prove the following Identities
1.The minute hand of a watch is 1.5 cm long. How far does it tip move in 40 minute?
Ans. r = 1.5 cm
Angle made in 60 mint = 3600
Angle made in 1 min = = 600
Angle made in 40 mint = 6 40
= 2400
Θ =
2. Show that tan 3x. tan 2x. tan x = tan 3x – tan 2x – tan x
Ans.Let 3x = 2x + x
tan 3x = tan (2x + x)
3.Find the value of tan .
Ans.Let x =
4.Prove that
Ans.L.H.S =
5.If in two circles, arcs of the same length subtend angles 600 and 750 at the centre find the ratio of their radii.
Ans.
(1)÷ ( 2)
6.Prove that Cos 6x= 32 Cos6x – 48 Cos4 x + 18 Cos2 x-1
Ans.L.H.S. = Cos 6x
=
7.Solve Sin2x-Sin4x+Sin6x=o
Ans.
8.In a circle of diameter 40cm, the length of a chord is 20cm. Find the length of minor are of the chord.
Ans.
Θ = 600
s
9.Prove that tan 4x =
Ans. L. H. S = tan 4x
10.Prove that (Cos x + Cos y)2 + (Sin x – Sin y)2 = 4 Cos2
Ans. L. H. S = (Cos x + Cos y)2 + (Sin x – Sin y)2
11.If Cot x = - x lies in second quadrant find the values of other five trigonometric functions.
Ans.Cot x =
12.Prove that
Ans.L. H. S =
13.Prove that Sin x + Sin 3x + Sin 5x + Sin 7x = 4 Cos x. Cos 2x. Sin 4x
Ans.L. H. S. = Sin x + Sin 3x + Sin 5x + Sin 7x
= Sin x + Sin 7x + Sin 3x + Sin 5x
14.Find the angle between the minute hand and hour hand of a clock when the time is 7. 20.
Ans. Angle made by mint hand in 15 mint= 15 6 = 900
Angle made by hour hand in 1 hr = 300
in 60 minute = =
in 20 minute = =
Angle made = 90 + 10 = 1000
15.Show that
Ans.L H. S =
16.Prove that Cot 4x (Sin 5x + Sin 3x) = Cot x (Sin 5x – Sin 3x)
Ans.L. H. S = Cot 4x (Sin 5x + Sin 3x)
R. H. S = Cot x (Sin 5x – Sin 3x)
6 Marks Questions
1. Find the general solution of sin2x + sin4x + sin6x = 0
Ans.
2. Find the general solution of cos θ cos2 θ cos3θ =
Ans.
3.If Sin α + Sin β = a and Cos α + Cos β = b show that Cos (α + β) =
Ans.
4. Prove that Cos α + Cos β + Cos γ + Cos (α + β + γ)
Ans.L. H. S.
5.Prove that Sin3x +Sin2x-Sin2x=4Sinx.Cos. Cos
Ans.
6.Prove that 2Cos .Cos + Cos + Cos=0
Ans.L.H.S.
7. Find the value of tan (α + β) Given that
Ans.
8.Prove that
Ans.L. H. S=
9.Prove that
Ans.L. H. S =
10..Prove that Cos 2x. Cos -
Ans.L. H. S =
11.Prove that Cos 200. Cos 400. Cos 600 Cos 800 =
Ans.L. H. S = Cos 200. Cos 400. Cos 600. Cos 800.
= Cos 60. Cos 200. Cos 400. Cos 80.
12.If tan x =
Ans.π< x <
Cos x is – tive