NCERT Solutions class 12 Maths Exercise 6.2 (Ex 6.2) Chapter 6 Application of Derivatives


NCERT Solutions for Class 12 Maths Exercise 6.2 Chapter 6 Application of Derivatives – FREE PDF Download

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.2 (Ex 6.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks.

NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives (Ex 6.2) Exercise 6.2



1. Show that the function given by  is strictly increasing on R.

Ans. Given:  

   i.e., positive for all  R

Therefore,  is strictly increasing on R.


2. Show that the function given by  is strictly increasing on R.

 

Ans. Given:  

  =  > 0  i.e., positive for all  R

Therefore,  is strictly increasing on R.


3. Show that the function given by  is (a) strictly increasing  (b) strictly decreasing in  (c) neither increasing nor decreasing in 

 

Ans. Given:  

 

(a) Since,  > 0, i.e., positive in first quadrant, i.e., in 
Therefore,  is strictly increasing in 

(b) Since,  < 0, i.e., negative in second quadrant, i.e., in 
Therefore,  is strictly decreasing in 

(c) Since  > 0, i.e., positive in first quadrant, i.e., in  and  < 0, i.e., negative in second quadrant, i.e., in  and .
   does not have the same sign in the interval 
Therefore,  is neither increasing nor decreasing in 


4. Find the intervals in which the function  given by  is (a) strictly increasing, (b) strictly decreasing.

 

Ans. Given:  

      ……….(i)
Now 
 
Therefore, we have two disjoint sub  intervals  and 

(a) For interval  taking  (say), then from eq. (i),  > 0.
Therefore,  is strictly increasing in 

(b) For interval  taking  (say), then from eq. (i),  < 0.
Therefore,  is strictly decreasing in 


5. Find the intervals in which the function  given by  is (a) strictly increasing, (b) strictly decreasing.

 

Ans. (a) Given:  

   = 
    ……….(i)
Now 
  or 
  or 
Therefore, we have three disjoint sub-intervals   and 
For interval    taking  (say), from eq. (i),
 > 0
Therefore,  is strictly increasing in 
For interval    taking  (say), from eq. (i),
 < 0
Therefore,  is strictly decreasing in 
For interval    taking  (say), from eq. (i),
 > 0
Therefore,  is strictly increasing in 
Hence, (a)  is strictly increasing in  and 

(b)  is strictly decreasing in 


6. Find the intervals in which the following functions are strictly increasing or decreasing:

 

(a) 

(b) 

(c) 

(d) 

(e) 

Ans. (a) Given:  

     ……….(i)

Now 

 

Therefore, we have two sub-intervals  and 

For interval  taking  (say), from eq. (i),  < 0

Therefore,  is strictly decreasing.

For interval  taking  (say), from eq. (i),  > 0

Therefore,  is strictly increasing.

(b) Given: 

  =   ……….(i)

Now 

 

Therefore, we have two sub-intervals  and 

For interval  taking  (say), from eq. (i),

 > 0

Therefore,  is strictly increasing.

For interval  taking  (say), from eq. (i),

 < 0

Therefore,  is strictly decreasing.

(c) Given: 

 

  

 ……….(i)

Now  = 0

  or 

Therefore, we have three disjoint intervals  and 

For interval , from eq. (i),

 =  < 0

Therefore,  is strictly decreasing.

For interval , from eq. (i),

 =  > 0

Therefore,  is strictly increasing.

For interval , from eq. (i),

 =  < 0

Therefore,  is strictly decreasing.

(d) Given: 

          ……….(i)

Now 

 

Therefore, we have two disjoint intervals  and 

For interval ,  taking x=-6 (say)

from eq. (i),   > 0

Therefore,  is strictly increasing.

For interval ,    taking x=  0   (say)

from eq. (i),      <  0

Therefore,  is strictly decreasing.

(e) Given: 

 

  

  

  

Here, factors  and  are non-negative for all x

Therefore,  is strictly increasing if 

 

 

And  is strictly decreasing if 

 

 

Hence,  is strictly increasing in  and  is strictly decreasing in 


7. Show that  is an increasing function of  throughout its domain.

 

Ans. Given:  

  

 

=   11+x(4+2x2x)(2+x)211+x−(4+2x−2x)(2+x)2

  

 ……….(i)

Domain of the given function is given to be 

 

Also  and 

  From eq. (i),  for all  in domain  and  is an increasing function.


8. Find the value of  for which  is an increasing function.

 

Ans. Given:   

 

 

[Applying Product Rule]

 

   ……….(i)

 

Therefore, we have four disjoint subintervals  

For   taking  (say),

 

  is decreasing.

For   taking  (say),

 

  is increasing.

For   taking  (say),

 

  is decreasing.

For   taking  (say),

 

  is increasing.

thus  is increasing in  and  

 is decreasing in  and 


9. Prove that  is an increasing function of  in 

 

Ans. Given:  

  

 

 

Since  and we have , therefore 

   for 

Hence,  is an increasing function of  in 


10. Prove that the logarithmic function is strictly increasing on 

 

Ans. Given:  

 

for all  in 

Therefore,  is strictly increasing on 


11. Prove that the function  given by  is neither strictly increasing nor strictly decreasing on 

 

Ans. Given:  

 

 is strictly increasing if 

 

 

i.e., increasing on the interval 

 is strictly decreasing if 

 

 

i.e., decreasing on the interval 

hence,  is neither strictly increasing nor decreasing on the interval 


12. Which of the following functions are strictly decreasing on 

 

Ans. (A)  

 

Since 

thus for  x  in       sinx is positive in first quadrent

 

 

So,     

Therefore,  is strictly decreasing on 

(B) 

 

Since 

    therefore 

 

So,    

Therefore,  is strictly decreasing on 

(C) 

 

Since 

  

thus two cases    and   

For 

 

So,   

Therefore,  is strictly decreasing on 

For 

 

So ,     

Therefore,  is strictly increasing on 

Hence,  is neither strictly increasing not strictly decreasing on 

(D) 

  > 0

Therefore,  is strictly increasing on 


13. On which of the following intervals is the function  given by  is strictly decreasing:

 

(A) (0, 1)

(B) 

(C) 

(D) None of these

Ans. Given:  

  

(A) On (0, 1),    therefore 

And for 

  (0, 1 radian) =  > 0

Therefore,  is strictly increasing on (0, 1).

(B) For   

= (1.5, 3.1) > 1 and hence  > 100

For   is in second quadrant and hence  is negative and between  and 0.

Therefore,  is strictly increasing on .

(C) On  = (0, 1.5) both terms of given function are positive.

Therefore,  is strictly increasing on .

(D) Option (D) is the correct answer.


14. Find the least value of  such that the function  given by  strictly increasing on (1, 2).

 

Ans.  

  

Since  is strictly increasing on (1, 2), therefore  > 0 for all  in (1, 2)

 On (1, 2) 

 

 

 Minimum value of  is  and maximum value is 

Since  > 0 for all  in (1, 2)

  and 

  and 

Therefore least value of  is 


15. Let I be any interval disjoint from  Prove that the function  given by  is strictly increasing on I.

 

Ans. Given:  

  

    ……….(i)

Here for every  either  or 

  for  (say),

 > 0

And for  (say),

 > 0

  > 0 for all  xIx∈I, hence  is strictly increasing on  II


16. Prove that the function  given by  is strictly increasing on  and strictly decreasing on 

 

Ans. Given:  

 

On the interval  i.e., in first quadrant,

 > 0

Therefore,  is strictly increasing on .

On the interval  i.e., in second quadrant,

 < 0

Therefore,  is strictly decreasing on .


17. Prove that the function  given by  is strictly decreasing on  and strictly increasing on 

 

Ans. Given:  

 

On the interval  i.e., in first quadrant,  is positive, thus  < 0

Therefore,  is strictly decreasing on .

On the interval  i.e., in second quadrant,  is negative thus  > 0

Therefore,  is strictly increasing on .


18. Prove that the function given by  is increasing in R.

 

Ans. Given:  

 

  for all  in R.

Therefore,  is increasing on R.


19. The interval in which  is increasing in:

 

(A) 

(B) 

(C) 

(D) (0, 2)

Ans. Given:  

 

 

 

In option (D),  for all  in the interval (0, 2).

Therefore, option (D) is correct.