NCERT Solutions class 12 Maths Exercise 5.5 (Ex 5.5) Chapter 5 Continuity and Differentiability


NCERT Solutions for Class 12 Maths Exercise 5.5 Chapter 5 Continuity and Differentiability – FREE PDF Download

Free PDF download of NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.5 (Ex 5.5) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.5 Questions with Solutions to help you to revise complete Syllabus and Score More marks.

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.5 (Ex 5.5)



Differentiate the functions with respect to  in Exercise 1 to 5.

1. 

Ans. Let   ……….(i) 

Taking logs on both sides, we have

 

log y  = 

 

  

  

  

 

 


2. 

 

Ans. Let  =   ……….(i) 

Taking logs on both sides, we have

 

 

 


3. 

 

Ans. Let  ……….(i) 

Taking logs on both sides, we have

 

 

   [By Product rule]

 

 1y.dydx=cosxlogx.1xsinxlog(logx)1y.dydx=cos⁡xlog⁡x.1x−sin⁡xlog⁡(log⁡x)

 dydx=y[cosxxlogxsinxlog(logx)]dydx=y[cos⁡xxlog⁡x−sin⁡xlog⁡(log⁡x)]

  dydx=(logx)cosx[cosxxlogxsinxlog(logx)]dydx=(log⁡x)cos⁡x[cos⁡xxlog⁡x−sin⁡xlog⁡(log⁡x)]

 


4. 

 

Ans. Let  

Putting  and 

 

  ……….(i)

Now, 

 

 

 

 

 

 

 dudxdudx ……….(ii)

Again,  

       

  

  ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i),


5. 

 

Ans. Let  …….(i) 

Taking logs on both sides, we have

 logy=2log(x+3)+3log(x+4)+4log(x+5)log⁡y=2log⁡(x+3)+3log⁡(x+4)+4log⁡(x+5)

 

 

 

 

 

 dydx=(x+3)2(x+4)3(x+5)4(2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5))dydx=(x+3)2(x+4)3(x+5)4(2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5))

 dydx=(x+3)2(x+4)3(x+5)4(2x2+18x+40+3x2+24x+45+4x2+28x+48(x+3)(x+4)(x+5))dydx=(x+3)2(x+4)3(x+5)4(2×2+18x+40+3×2+24x+45+4×2+28x+48(x+3)(x+4)(x+5))

 dydx=(x+3)(x+4)2(x+5)3(9x2+70x+133)dydx=(x+3)(x+4)2(x+5)3(9×2+70x+133)


Differentiate the functions with respect to  in Exercise 6 to 11.

 

6. (x+1x)x+x(1+1x)(x+1x)x+x(1+1x)

Ans. Let y=y=  (x+1x)x+x(1+1x)(x+1x)x+x(1+1x) 

Putting             and  x(1+1x)=vx(1+1x)=v

  ……….(i)

Now 

 

 

 1u.dudx=x.1(x+1x)(11x2)+log(x+1x).11u.dudx=x.1(x+1x)(1−1×2)+log⁡(x+1x).1

 

 ……….(ii)

Again v=x(1+1x)v=x(1+1x)

 logv=logx(1+1x)=(1+1x)logxlog⁡v=log⁡x(1+1x)=(1+1x)log⁡x

 1v.dvdx=(1+1x).1x+logx.(1x2)1v.dvdx=(1+1x).1x+log⁡x.(−1×2)

 dvdx=v[(1+1x).1x+logx.(1x2)]dvdx=v[(1+1x).1x+log⁡x.(−1×2)]

 dvdx=x(1+1x)[1x(1+1x)1x2logx]dvdx=x(1+1x)[1x(1+1x)−1x2log⁡x] ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i),

dydx=(x+1x)x[x21x2+1+log(x+1x)]+x(1+1x)[1x(1+1x)1x2logx]dydx=(x+1x)x[x2−1×2+1+log⁡(x+1x)]+x(1+1x)[1x(1+1x)−1x2log⁡x]


7. 

 

Ans. Let  =  

where  and 

    ……….(i)

Now 

 

 

 

 

 

 

  ……….(ii)

Again 

 

 

 

 

 

   ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i),

 

 


8. 

 

Ans. Let  =  

where  and 

  ……….(i)

Now 

 

 

 

 

 1u.dudx=x.1sinxcosx+log(sinx)=xcotx+logsinx1u.dudx=x.1sin⁡xcos⁡x+log⁡(sin⁡x)=xcot⁡x+log⁡sin⁡x

 

   ……….(ii)

Again  

  

 

 ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i),


9. 

 

Ans. Let  

Putting  and , we get  

   ……….(i)

Now 

  = 

 

 

 

 

 

  …..(ii)

Again 

  = 

 

 

 

 

 

  ……….(iii)

Putting values from eq. (ii) and (iii) in eq. (i),


10. 

 

Ans. Let  

Putting  and ,

we have 

   ……….(i)

Now    

  = 

 

 

 

 

  ……….(ii)

Again  

 

 

 

  ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i),

 


11. 

 

Ans. Let  

Putting  and ,

we have 

  ……….(i)

Now 

  = 

 

 

 

 

  ……….(ii)

Again 

  = 

 

 

 

 

  ……….(iii)

Putting the values from eq. (ii) and (iii) in eq. (i)

,


Find  in the following Exercise 12 to 15

 

12. 

Ans. Given:  

 

where  and 

 

  ……….(i)

Now 

 

 

 

 

 

 

  ……….(ii)

Again 

 

 

 

 

 

 

 ……….(iii)

Putting values from eq. (ii) and (iii) in eq. (i),

 

 

 


13. 

 

Ans. Given:  

 

 

 

 

 

 

 

 


14. 

 

Ans. Given:  

 

 

 

 

 

 

 

 

 

 


15. 

 

Ans. Given:  

 

 

  

 

 

 

 

 


16. Find the derivative of the function given by  and hence 

 

Ans. Given:      ……….(i) 

 

 

 

 

 

Putting the value of  from eq. (i),

 

 

 

 8 x 15 = 120


17. Differentiate  in three ways mentioned below:

 

(i)    by using product rule.

(ii)   by expanding the product to obtain a single polynomial

(iii)  by logarithmic differentiation.

Do they all give the same answer?

Ans. Let  ……….(i) 

(i) 

 

 

 dydx=5x420x3+45x252x+11dydx=5×4−20×3+45×2−52x+11 ……….(ii)

(ii) 

 

 

  ……….(iii)

(iii) 

 

 

 

 

 

 

 

 

 

  [From eq. (i)]

  ……….(iv)

From eq. (ii), (iii) and (iv), we can say that value of  is same obtained by three different methods.


18. If  and  are functions of  then show that  in two ways – first by repeated application of product rule, second by logarithmic differentiation.

 

Ans. Given:  and  are functions of  

To prove: 

(i) By repeated application of product rule:

L.H.S.   = 

= R.H.S  Hence proved.

(ii) By Logarithmic differentiation:

Let 

 

 

 

 

 

Putting , we get

  Hence proved.